
Swarm Debugging: the Collective Intelligence on Interactive Debugging

Fabio Petrillo1, Yann-Gaël Guéhéneuc3, Marcelo Pimenta2, Carla Dal Sasso Freitas2, Foutse Khomh4

1Université du Quebéc à Chicoutimi, 2Federal University of Rio Grande do Sul, 3Concordia University, 4Polytechnique Montreal, Canada

Abstract

One of the most important tasks in software maintenance is debugging. To start an interactive debugging session,
developers usually set breakpoints in an integrated development environment and navigate through different paths in
their debuggers. We started our work by asking what debugging information is useful to share among developers
and study two pieces of information: breakpoints (and their locations) and sessions (debugging paths). To answer
our question, we introduce the Swarm Debugging concept to frame the sharing of debugging information, the Swarm
Debugging Infrastructure (SDI) with which practitioners and researchers can collect and share data about developers’
interactive debugging sessions, and the Swarm Debugging Global View (GV) to display debugging paths. Using the
SDI, we conducted a large study with professional developers to understand how developers set breakpoints. Using the
GV, we also analyzed professional developers in two studies and collected data about their debugging sessions. Our
observations and the answers to our research questions suggest that sharing and visualizing debugging data can support
debugging activities.

Keywords: Debugging, swarm debugging, software visualization, empirical studies, distributed systems, information
foraging.

1. Introduction

Debug. To detect, locate, and correct faults in
a computer program. Techniques include the
use of breakpoints, desk checking, dumps, in-
spection, reversible execution, single-step oper-5

ations, and traces.
—IEEE Standard Glossary of SE Terminology,
1990

Debugging is a common activity during software de-
velopment, maintenance, and evolution [1]. Developers10

use debugging tools to detect, locate, and correct faults.
Debugging tools can be interactive or automated.

Interactive debugging tools, a.k.a. debuggers, such as
sdb [2], dbx [3], or gdb [4], have been used by develop-
ers for decades. Modern debuggers are often integrated in15

interactive environments, e.g., DDD [5] or the debuggers
of Eclipse, NetBeans, IntelliJ IDEA, and Visual Studio.
They allow developers to navigate through the code, look
for locations to place breakpoints, and step over/into state-
ments. While stepping, debuggers can traverse method20

invocations and allow developers to toggle one or more
breakpoints and stop/restart executions. Thus, they al-
low developers to gain knowledge about programs and the
causes of faults to fix them.

Automated debugging tools require both successful and25

failed runs and do not support programs with interac-
tive inputs [6]. Consequently, they have not been widely
adopted in practice. Moreover, automated debugging ap-

proaches are often unable to indicate the “true” locations
of faults [7]. Other hybrid tools, such as slicing and query30

languages, may help developers but there is insufficient
evidence that they help developers during debugging.

Although Integrated Development Environments (IDEs)
encourage developers to work collaboratively, exchanging
code through Git or assessing code quality with Sonar-35

Qube, one activity remains solitary: debugging. Debug-
ging is still an individual activity, during which, a devel-
oper explores the source code of the system under devel-
opment or maintenance using the debugger provided by
an IDE. She steps into hundreds of statements and tra-40

verses dozens of method invocations painstakingly to gain
an understanding of the system. Moreover, within mod-
ern interactive debugging tools, such as those included in
Eclipse or IntelliJ, a debugging session cannot start if the
developer does not set a breakpoint. Consequently, it is45

mandatory to set at least one breakpoint to launch an in-
teractive debugging session.

Several studies have shown that developers spend over
two-thirds of their time investigating code and one-third
of this time is spent in debugging [8, 9, 10]. However,50

developers do not reuse the knowledge accumulated during
debugging directly. When debugging is over, they loose
track of the paths that they followed into the code and of
the breakpoints that they toggled. Moreover, they cannot
share this knowledge with other developers easily. If a55

fault re-appears in the system or if a new fault similar to
a previous one is logged, the developer must restart the

Preprint submitted to Journal of Systems and Software January 11, 2020

exploration from the beginning.
In fact, debugging tools have not changed substan-

tially in the last 30 years: developers’ primary tools for60

debugging their programs are still breakpoint debuggers
and print statements. Indeed, changing the way develop-
ers debug their programs is one of the main motivations
of our work. We are convinced that a collaborative way
of using contextual information of (previous) debugging65

sessions to support (future) debugging activities is a very
interesting approach.

Roßler [7] advocated for the development of a new fam-
ily of debugging tools that use contextual information.
To build context-aware debugging tools, researchers need70

an understanding of developers’ debugging sessions to use
this information as context for their debugging. Thus,
researchers need tools to collect and share data about de-
velopers’ debugging sessions.

Maalej et al. [11] observed that capturing contextual75

information requires the instrumentation of the IDE and
continuous observation of the developers’ activities within
the IDE. Studies by Storey et al. [12] showed that the
newer generation of developers, who are proficient in so-
cial media, are comfortable with sharing such information.80

Developers are nowadays open, transparent, eager to share
their knowledge, and generally willing to allow information
about their activities to be collected by the IDEs automat-
ically [12].

Considering this context, we introduce the concept of85

Swarm Debugging (SD) to (1) capture debugging con-
textual information, (2) share it, and (3) reuse it across
debugging sessions and developers. We build the concept
of Swarm Debugging based on the idea that many devel-
opers, performing debugging sessions independently, are90

in fact building collective knowledge, which can be shared
and reused with adequate support. Thus, we are convinced
that developers need support to collect, store, and share
this knowledge, i.e., information from and about their
debugging sessions, including but not limited to break-95

points locations, visited statements, and traversed paths.
To provide such support, Swarm Debugging includes (i)
the Swarm Debugging Infrastructure (SDI), with which
practitioners and researchers can collect and share data
about developers’ interactive debugging sessions, and (ii)100

the Swarm Debugging Global View (GV) to display de-
bugging paths.

As a consequence of adopting SD, an interesting ques-
tion emerges: what debugging information is useful to
share among developers to ease debugging? Debugging105

provides a lot of information which could be possibly con-
sidered useful to improve software comprehension but we
are particularly interested in two pieces of debugging in-
formation: breakpoints (and their locations) and sessions
(debugging paths), because these pieces of information are110

essential for the two main activities during debugging: set-
ting breakpoints and stepping in/over/out statements.

In general, developers initiate an interactive debug-
ging session by setting a breakpoint. Setting a breakpoint

is one of the most frequently used features of IDEs [13].115

To decide where to set a breakpoint, developers use their
observations, recall their experiences with similar debug-
ging tasks and formulate hypotheses about their tasks [14].
Tiarks and Röhms [15] observed that developers have dif-
ficulties in finding locations for setting the breakpoints,120

suggesting that this is a demanding activity and that sup-
porting developers to set appropriate breakpoints could
reduce debugging effort.

We conducted two sets of studies with the aim of un-
derstanding how developers set breakpoints and navigate125

(step) during debugging sessions. In observational studies,
we collected and analyzed more than 10 hours of develop-
ers’ videos in 45 debugging sessions performed by 28 differ-
ent, independent developers, containing 307 breakpoints
on three software systems. These observational studies130

help us understand how developers use breakpoints (RQ1
to RQ4).

We also conducted with 30 professional developers two
studies, a qualitative evaluation and a controlled experi-
ment, to assess whether debugging sessions, shared through135

our Global View visualisation, support developers in their
debugging tasks and is useful for sharing debugging tasks
among developers (R5 and RQ6). We collected partici-
pants’ answers in electronic forms and more than 3 hours
of debugging sessions on video.140

This paper has the following contributions:

• We introduce a novel approach for debugging named
Swarm Debugging (SD) based on the concept of Swarm
Intelligence and Information Foraging Theory.

• We present an infrastructure, the Swarm Debugging145

Infrastructure (SDI), to gather, store, and share data
about interactive debugging activities to support SD.

• We provide evidence about the relation between tasks’
elapsed time, developers’ expertise, breakpoints set-
ting, and debugging patterns.150

• We present a new visualisation technique, Global
View (GV), built on shared debugging sessions by
developers to ease debugging.

• We provide evidence about the usefulness of sharing
debugging session to ease developers’ debugging.155

This paper extends our previous works [16, 17, 18] as
follows. First, we summarize the main characteristics of
the Swarm Debugging approach, providing a theoretical
foundation to Swarm Debugging using Swarm Intelligence
and Information Foraging Theory. Second, we present the160

Swarm Debugging Infrastructure (SDI). Third, we perform
an experiment on the debugging behavior of 30 profes-
sional developers to evaluate if sharing debugging sessions
supports adequately their debugging tasks.

The remainder of this article is organized as follows.165

Section 2 provides some fundamentals of debugging and
the foundations of SD: the concepts of swarm intelligence

2

and information foraging theory. Section 3 describes our
approach and its implementation, the Swarm Debugging
Infrastructure. Section 6 presents an experiment to as-170

sess the benefits that our SD approach can bring to de-
velopers, and Section 5 reports two experiments that were
conducted using SDI to understand developers debugging
habits. Next, Section 7 discusses implications of our re-
sults, while Section 8 presents threats to the validity of175

our study. Section 9 summarizes related work, and finally,
Section 10 concludes the paper and outlines future work.

2. Background

This section provides background information about
the debugging activity and setting breakpoints. In the180

following, we use failures as unintended behaviours of
a program, i.e., when the program does something that
it should not, and faults as the incorrect statements in
source code causing failures. The purpose of debugging is
to locate and correct faults, hence to fix failures.185

2.1. Debugging and Interactive Debugging

The IEEE Standard Glossary of Software Engineering
Terminology (see the definition at the beginning of Sec-
tion 1) defines debugging as the act of detecting, locating,
and correcting bugs in a computer program. Debugging190

techniques include the use of breakpoints, desk checking,
dumps, inspection, reversible execution, single-step oper-
ations, and traces.

Araki et al. [19] describe debugging as a process where
developers make hypotheses about the root-cause of a prob-195

lem or defect and verify these hypotheses by examining
different parts of the source code of the program.

Interactive debugging consists of using a tool, i.e., a de-
bugger to detect, locate, and correct a fault in a program.
It is a process also known as program animation, stepping,200

or following execution [20]. Developers often refer to this
process simply as debugging, because several IDEs pro-
vide debuggers to support debugging. However, it must be
noted that while debugging is the process of finding faults,
interactive debugging is one particular debugging approach205

in which developers use interactive tools. Expressions such
as interactive debugging, stepping and debugging are used
interchangeably, and there is not yet a consensus on what
is the best name for this process.

2.2. Breakpoints and Supporting Mechanisms210

Generally, breakpoints allow pausing intentionally the
execution of a program for debugging purposes, a means of
acquiring knowledge about a program during its execution,
for example, to examine the call stack and variable values
when the control flow reaches the locations of the break-215

points. Thus, a breakpoint indicates the location (line) in
the source code of a program where a pause occurs during
its execution.

Depending on the programming language, its run-time
environment (in particular the capabilities of its virtual220

machines if any), and the debuggers, different types of
breakpoints may be available to developers. These types
include static breakpoints [21], that pause unconditionally
the execution of a program, and dynamic breakpoints [22],
that pause depending on some conditions or threads or225

numbers of hits.
Other types of breakpoints include watchpoints that

pause the execution when a variable being watched is read
and–or written. IDEs offer the means to specify the differ-
ent types of breakpoints depending on the programming230

languages and their run-time environment. Fig. 1-A and 1-
B show examples of static and dynamic breakpoints in
Eclipse. In the rest of this paper, we focus on static break-
points because they are the most used of all types [14].

There are different mechanisms for setting a breakpoint235

within the code:

• GUI: Most IDEs or browsers offer a visual way of
adding a breakpoint, usually by clicking at the be-
ginning of the line on which to set the breakpoint:
Chrome1, Visual Studio2, IntelliJ 3, and Xcode4.240

• Command line: Some programming languages offer
debugging tools on the command line, so an IDE is
not necessary to debug the code: JDB5, PDB6, and
GDB7.

• Code: Some programming languages allow using syn-245

tactical elements to set breakpoints as they were ‘an-
notations’ in the code. This approach often only sup-
ports the setting of a breakpoint, and it is necessary
to use it in conjunction with the command line or
GUI. Some examples are: Ruby debugger8, Firefox 9,250

and Chrome10.

There is a set of features in a debugger that allows de-
velopers to control the flow of the execution within the
breakpoints, i.e., Call Stack features, which enable contin-
uing or stepping.255

A developer can opt for continuing, in which case the
debugger resumes execution until the next breakpoint is
reached or the program exits. Conversely, stepping allows
the developer to run step by step the entire program flow.
The definition of a step varies across programming lan-260

guages and debuggers, but it generally includes invoking
a method and executing a statement. While Stepping, a

1
https://developers.google.com/web/tools/chrome-devtools/javascript/add-

breakpoints
2
https://msdn.microsoft.com/en-us/library/5557y8b4.aspx

3
https://www.jetbrains.com/help/idea/2016.3/debugger-basics.html

4
http://jeffreysambells.com/2014/01/14/using-breakpoints-in-xcode

5
http://docs.oracle.com/javase/7/docs/technotes/tools/windows/jdb.html

6
https://docs.python.org/2/library/pdb.html

7
ftp://ftp.gnu.org/oldgnu/Manuals/gdb5.1.1/html node/gdb 37.html

8
https://github.com/cldwalker/debugger

9
https://developer.mozilla.org

10
https://developers.google.com/web/tools/chrome-devtools/javascript/add-

breakpoints

3

Figure 1: Setting a static breakpoint (A) and a conditional breakpoint (B) using Eclipse IDE

developer can navigate between steps using the following
commands:

• Step Over: the debugger steps over a given line.265

If the line contains a function, then the function is
executed, and the result returned without stepping
through each of its lines.

• Step Into: the debugger enters the function at the
current line and continue stepping from there, line-270

by-line.

• Step Out: this action would take the debugger back
to the line where the current function was called.

To start an interactive debugging session, developers
set a breakpoint. If not, the IDE would not stop and enter275

its interactive mode. For example, Eclipse IDE automat-
ically opens the “Debugging Perspective” when execution
hits a breakpoint. A developer can run a system in de-
bugging mode without setting breakpoints, but she must
set a breakpoint to be able to stop the execution, step in,280

and observe variable states. Briefly, there is no interactive
debugging session without at least one breakpoint set in
the code.
Finally, some debuggers allow debugging remotely, for ex-
ample, to perform hot-fixes or to test mobile applications285

and systems operating in remote configurations.

2.3. Self-organization and Swarm Intelligence

Self-organization is a concept emerged from Social Sci-
ences and Biology and it is defined as the set of dynamic

mechanisms enabling structures to appear at the global290

level of a system from interactions among its lower-level
components, without being explicitly coded at the lower
levels. Swarm intelligence (SI) describes the behavior re-
sulting from the self-organization of social agents (as in-
sects) [23]. Ant nests and the societies that they house295

are examples of SI [24]. Individual ants can only perform
relatively simple activities, yet the whole colony can collec-
tively accomplish sophisticated activities. Ants achieve SI
by exchanging information encoded as chemical signals—
pheromones, e.g., indicating a path to follow or an obstacle300

to avoid.
Similarly, SI could be used as a metaphor to under-

stand or explain the development of a multiversion large
and complex software systems built by software teams. In-
dividual developers can usually perform activities without305

having a global understanding of the whole system [25].
In a bird’s eye view, software development is analogous
to some SI in which groups of agents, interacting locally
with one another and with their environment and following
simple rules, lead to the emergence of global behaviors pre-310

viously unknown/impossible to the individual agents. We
claim that the similarities between the SI of ant nests and
complex software systems are not a coincidence. Cockburn
[26] suggested that the best architectures, requirements,
and designs emerge from self-organizing developers, grow-315

ing in steps and following their changing knowledge, and
the changing wishes of the user community, i.e., a typical
example of swarm intelligence.

4

Dev1

Dev2

Dev3

DevN

Visualisations
Searching Tools

Recommendation Systems

Single Debugging Session Crowd Debugging Sessions Debugging Information

Positive feedback

Collect data Store data

Transform information

A B C

D

Figure 2: Overview of the Swarm Debugging approach

2.4. Information Foraging

Information Foraging Theory (IFT) is based on the op-320

timal foraging theory developed by Pirolli and Card [27]
to understand how people search for information. IFT is
rooted in biology studies and theories of how animals hunt
for food. It was extended to debugging by Lawrance et
al.[27].325

However, no previous work proposes the sharing of
knowledge related to debugging activities. Differently from
works that use IFT on a model one prey/one predator [28],
we are interested in many developers working indepen-
dently in many debugging sessions and sharing informa-330

tion to allow SI to emerge. Thus, debugging becomes a
foraging process in a SI environment.

These concepts—SI and IFT—have led to the design of
a crowd approach applied to debugging activities: a differ-
ent, collective way of doing debugging that collects, shares,335

retrieves information from (previous and current) debug-
ging sessions to support (current and future) debugging
sessions.

3. The Swarm Debugging Approach

Swarm Debugging (SD) uses swarm intelligence applied340

to interactive debugging data to create knowledge for sup-
porting software development activities. Swarm Debug-
ging works as follows.

First, several developers perform their individual, inde-
pendent debugging activities. During these activities, de-345

bugging events are collected by listeners (Label A in Figure
2), for example, breakpoints-toggling and stepping events

(Label B in Figure 2), that are then stored in a debugging-
knowledge repository (Label C in Figure 2). For accessing
this repository, services are defined and implemented in350

the SDI. For example, stored events are processed by ded-
icated algorithms (Label D in Figure 2) (1) to create (sev-
eral types of) visualizations, (2) to offer (distinct ways of)
searching, and (3) to provide recommendations to assist
developers during debugging. Recommendations are re-355

lated to the locations where to toggle breakpoints. Storing
and using these events allow sharing developers’ knowledge
among developers, creating a collective intelligence about
the software systems and their debugging.

We chose to instrument the Eclipse IDE, a popular360

IDE, to implement Swarm Debugging and to reach a large
number of users. Also, we use services in the cloud to
collect the debugging events, to process these events and
to provide visualizations and recommendations from these
events. Thus, we decoupled data collection from data us-365

age, allowing other researchers/tools vendors to use the
collected data.

During debugging, developers analyze the code, tog-
gling breakpoints and stepping in and through statements.
While traditional dynamic analysis approaches collect all370

interactions, states or events, SD collects only invocations
explicitly explored by developers : SDI collects only visited
areas and paths (chains of invocations by e.g.,Step Into or
F5 in Eclipse IDE) and, thus, does not suffer from perfor-
mance or memory issues as omniscient debuggers [29] or375

tracing-based approaches could.
Our decision to record information about breakpoints

and stepping is well supported by a study from Beller et

5

Figure 3: GV elements - Types (nodes), invocations (edge) and
Task filter area.

al. [30]. A finding of this study is that setting breakpoints
and stepping through code are the most used debugging380

features. They showed that most of the recorded debug-
ging events are related to the creation (4,544), removal
(4,362) or adjustment of breakpoints, hitting them during
debugging and stepping through the source code. Fur-
thermore, other advanced debugging features like defining385

watches and modifying variable values have been much less
used [30].

4. SDI in a Nutshell

To evaluate the Swarm Debugging approach, we have
implemented the Swarm Debugging Infrastructure (see390

https://github.com/SwarmDebugging). The Swarm De-
bugging Infrastructure (SDI) [17] provides a set of tools for
collecting, storing, sharing, retrieving, and visualizing data
collected during developers’ debugging activities. The SDI
is an Eclipse IDE11 plug-in, integrated with Eclipse De-395

bug core. It is organized in three main modules: (1)
the Swarm Debugging Services; (2) the Swarm Debugging
Tracer; and, (3) Swarm Debugging Views. All the im-
plementation details of SDI are available in the Appendix
section.400

4.1. Swarm Debugging Global View

Swarm Debugging Global View (GV) is a call graph for
modeling software based on directed call graph [31] to ex-
plicit the hierarchical relationship by invocated methods.
This visualization use rounded gray boxes (Figure 3-A)405

to represent types or classes (nodes) and oriented arrows
(Figure 3-B) to express invocations (edges). GV is built
using previous debugging session context data collected by
developers for different tasks.

GV was implemented using CytoscapeJS [32], a Graph410

API JavaScript framework, applying an automatic layout

11https://www.eclipse.org/

manager breadthfirst. As a web application, the SD vi-
sualisations can be integrated into an Eclipse view as an
SWT Browser Widget, or accessed through a traditional
browser such as Mozilla Firefox or Google Chrome.415

In this view, the grey boxes are types that develop-
ers visited during debugging sessions. The edges represent
method calls (Step Into or F5 on Eclipse) performed by all
developers in all traced tasks on a software project. Each
edge colour represents a task, and line thickness is pro-420

portional to the number of invocations. Each debugging
session contributes with a context, generating the visuali-
sation combining all collected invocations. The visualisa-
tion is organised in layers or stacks, and each line is a layer
of invocations. The starting points (non-invoked methods)425

are allocated on top of a tree, the adjacent nodes in an in-
vocation sequence. Besides, developers can directly go to
a type in the Eclipse Editor by double-clicking over a node
in the diagram. In the left corner, developers can use radio
buttons to filter invocations by task (figure 3-C), showing430

the paths used by developers during previous debugging
sessions by a task. Finally, developers can use the mouse
to pan and zoom in/out on the visualisation. Figure 4
shows an example of GV with all tasks for JabRef system,
and we have data about 8 tasks.435

GV is a contextual visualization that shows only the
paths explicitly and intentionally visited by devel-
opers, including type declarations and method invoca-
tions explored by developers based on their decisions.

5. Using SDI to Understand Debugging Activities440

The first benefit of SDI is the fact that it allows for
collecting detailed information about debugging sessions.
Using this information, researchers can investigate devel-
opers behaviors during debugging activities. To illustrate
this point, we conducted two experiments using SDI, to445

understand developers debugging habits: the times and
effort with which they set breakpoints and the locations
where they set breakpoints.

Our analysis builds upon three independent sets of ob-
servations involving in total three systems. Studies 1 and450

2 involved JabRef, PDFSaM, and Raptor as subject sys-
tems. We analysed 45 video-recorded debugging sessions,
available from our own collected videos (Study 1) and an
empirical study performed by Jiang et al. [33] (Study 2).

In this study, we answered the following research ques-455

tions:

RQ1: Is there a correlation between the time of the first
breakpoint and a debugging task’s elapsed time?

RQ2: What is the effort in time for setting the first break-
point in relation to the debugging task’s elapsed time?460

RQ3: Are there consistent, common trends with respect
to the types of statements on which developers set
breakpoints?

6

https://github.com/SwarmDebugging

Figure 4: GV on all tasks

RQ4: Are there consistent, common trends with respect to
the lines, methods, or classes on which developers465

set breakpoints?

In this section, we elaborate more on each of the stud-
ies.

5.1. Study 1: Observational Study on JabRef

5.1.1. Subject System470

To conduct this first study, we selected JabRef12 ver-
sion 3.2 as subject system. This choice was motivated by
the fact that JabRef’s domain is easy to understand thus
reducing any learning effect. It is composed of relatively
independent packages and classes, i.e., high cohesion, low475

coupling, thus reducing the potential commingle effect of
low code quality.

5.1.2. Participants

We recruited eight male professional developers via an
Internet-based freelancer service13. Two participants are480

experts, and three are intermediate in Java. Developers
self-reported their expertise levels, which thus should be
taken with caution. Also, we recruited 12 undergraduate
and graduate students at Polytechnique Montréal to par-
ticipate in our study. We surveyed all the participants’485

background information before the study14. The survey
included questions about participants’ self-assessment on
their level of programming expertise (Java, IDE, and Eclipse),
gender, first natural language, schooling level, and knowl-
edge about TDD, interactive debugging and why usually490

they use a debugger. All participants stated that they had
experience in Java and worked regularly with the debugger
of Eclipse.

12http://www.jabref.org/
13https://www.freelancer.com/
14Survey available on https://goo.gl/forms/dxCQaBke2l2cqjB42

5.1.3. Task Description

We selected five defects reported in the issue-tracking495

system of JabRef. We chose the task of fixing the faults
that would potentially require developers to set break-
points in different Java classes. To ensure this, we man-
ually conducted the debugging ourselves and verified that
for understanding the root cause of the faults we had to set500

at least two breakpoints during our interactive debugging
sessions. Then, we asked participants to find the loca-
tions of the faults described in Issues 318, 667, 669, 993,
and 1026. Table 1 summarises the faults using their titles
from the issue-tracking system.505

Table 1: Summary of the issues considered in JabRef in Study 1

Issues Summaries

318 “Normalize to Bibtex name format”

667 “hash/pound sign causes URL link to fail”

669 “JabRef 3.1/3.2 writes bib file in a format

that it will not read”

993 “Issues in BibTeX source opens save dialog

and opens dialog Problem with parsing entry’

multiple times”

1026 “Jabref removes comments

inside the Bibtex code”

7

http://www.jabref.org/
https://www.freelancer.com/
https://goo.gl/forms/dxCQaBke2l2cqjB42

5.1.4. Artifacts and Working Environment

We provided the participants with a tutorial15 explain-
ing how to install and configure the tools required for the
study and how to use them through a warm-up task. We
also presented a video16 to guide the participants during510

the warm-up task. In a second document, we described
the five faults and the steps to reproduce them. We also
provided participants with a video demonstrating step-by-
step how to reproduce the five defects to help them get
started.515

We provided a pre-configured Eclipse workspace to the
participants and asked them to install Java 8, Eclipse Mars
2 with the Swarm Debugging Tracer plug-in [17] to col-
lect automatically breakpoint-related events. The Eclipse
workspace contained two Java projects: a Tetris game for520

the warm-up task and JabRef v3.2 for the study. We
also required that the participants install and configure
the Open Broadcaster Software17 (OBS), open-source soft-
ware for live streaming and recording. We used the OBS
to record the participants’ screens.525

5.1.5. Study Procedure

After installing their environments, we asked partici-
pants to perform a warm-up task with a Tetris game. The
task consisted of starting a debugging session, setting a
breakpoint, and debugging the Tetris program to locate a530

given method. We used this task to confirm that the par-
ticipants’ environments were properly configured and also
to accustom the participants with the study settings. It
was a trivial task that we also used to filter the participants
who would have too little knowledge of Java, Eclipse, and535

Eclipse Java debugger. All participants who participated
in our study correctly executed the warm-up task.

After performing the warm-up task, each participant
performed debugging to locate the faults. We established
a maximum limit of one-hour per task and informed the540

participants that the task would require about 20 minutes
for each fault, which we will discuss as a possible threat
to validity. We based this limit on previous experiences
with these tasks during mock trials. After the participants
performed each task, we asked them to answer a post-545

experiment questionnaire to collect information about the
study, asking if they found the faults, where were the
faults, why the faults happened, if they were tired, and
a general summary of their debugging experience.

5.1.6. Data Collection550

The Swarm Debugging Tracer plug-in automatically
and transparently collected all debugging data (breakpoints,
stepping, method invocations). Also, we recorded the par-
ticipant’s screens during their debugging sessions with OBS.
We collected the following data:555

15http://swarmdebugging.org/publication
16https://youtu.be/U1sBMpfL2jc
17https://obsproject.com

• 28 video recordings, one per participant and task,
which are essential to control the quality of each ses-
sion and to produce a reliable and reproducible chain
of evidence for our results.

• The statements (lines in the source code) where the560

participants set breakpoints. We considered the fol-
lowing types of statements because they are repre-
sentative of the main concepts in any programming
languages:

– call : method/function invocations;565

– return: returns of values;

– assignment : settings of values;

– if-statement : conditional statements;

– while-loop: loops, iterations.

• Summaries of the results of the study, one per par-570

ticipant, via a questionnaire, which included the fol-
lowing questions:

– Did you locate the fault?

– Where was the fault?

– Why did the fault happen?575

– Were you tired?

– How was your debugging experience?

Based on this data, we obtained or computed the fol-
lowing metrics, per participant and task:

• Start Time (ST): the timestamp when the partic-580

ipant started a task. We analysed each video, and
we started to count when effectively the participant
started a task, i.e., when she started the Swarm De-
bugging Tracer plug-in, for example.

• Time of First Breakpoint (FB): the time when the585

participant set her first breakpoint.

• End time (T): the time when the participant finished
a task.

• Elapsed End time (ET): ET = T − ST

• Elapsed Time First Breakpoint (EF): EF = FB −590

ST

We manually verified whether participants were suc-
cessful or not at completing their tasks by analysing the
answers provided in the questionnaire and the videos. We
knew the locations of the faults because all tasks were595

solved by JabRef’s developers, who completed the corre-
sponding reports in the issue-tracking system, with the
changes that they made.

8

http://swarmdebugging.org/publication
https://youtu.be/U1sBMpfL2jc
https://obsproject.com

5.2. Study 2: Empirical Study on PDFSaM and Raptor

The second study consisted of the re-analysis of 20600

videos of debugging sessions available from an empirical
study on change-impact analysis with professional develop-
ers [33]. The authors conducted their work in two phases.
In the first phase, they asked nine developers to read two
fault reports from two open-source systems and to fix these605

faults. The objective was to observe the developers’ be-
haviour as they fixed the faults. In the second phase, they
analysed the developers’ behaviour to determine whether
the developers used any tools for change-impact analysis
and, if not, whether they performed change-impact analy-610

sis manually.
The two systems analysed in their study are PDF Split

and Merge18 (PDFSaM) and Raptor19. They chose one
fault report per system for their study. They chose these
systems due to their non-trivial size and because the pur-615

poses and domains of these systems were clear and easy to
understand [33]. The choice of the fault reports followed
the criteria that they were already solved and that they
could be understood by developers who did not know the
systems. Alongside each fault report, they presented the620

developers with information about the systems, their pur-
pose, their main entry points, and instructions for repli-
cating the faults.

5.3. Results

As can be noticed, Studies 1 and 2 have different ap-625

proaches. The tasks in Study 1 were fault location tasks,
developers did not correct the faults, while the ones in
Study 2 were fault correction tasks. Moreover, Study 1 ex-
plored five different faults while Study 2 only analysed one
fault per system. The collected data provide a diversity630

of cases and allow a rich, in-depth view of how developers
set breakpoints during different debugging sessions.

In the following, we present the results regarding each
research question addressed in the two studies.

RQ1: Is there a correlation between the time of the first635

breakpoint and a debugging task’s elapsed time?

We normalised the elapsed time between the start of a
debugging session and the setting of the first breakpoint,
EF , by dividing it by the total duration of the task, ET ,
to compare the performance of participants across tasks640

(see Equation 1).

MFB =
EF

ET
(1)

Table 2 shows the average effort (in minutes) for each
task. We find in Study 1 that, on average participants
spend 27% of the total task duration to set the first break-645

point (std. dev. 17%). In Study 2, it took on average 23%

18http://www.pdfsam.org/
19https://code.google.com/p/raptor-chess-interface/

Table 2: Elapsed time by task (average) - Study 1 (JabRef) and
Study 2

Tasks Average Times (min.) Std. Devs. (min.)

318 44 64

667 28 29

669 22 25

993 25 25

1026 25 17

PdfSam 54 18

Raptor 59 13

of the task time to participants to set the first breakpoint
(std. dev. 17%).�

�

�

�

We conclude that the effort for setting the first
breakpoint takes near one-quarter of the total ef-
fort of a single debugging sessiona. So, this effort
is important, and this result suggest that debugging
time could be reduced by providing tool support for
setting breakpoints.

aIn fact, there is a “debugging task” that starts when a
developer starts to investigate the issue to understand and
solve it. There is also an “interactive debugging session”
that starts when a developer sets their first breakpoint and
decides to run an application in “debugging mode”. Also,
a developer could need to conclude one debugging task in
one-to-many interactive debugging sessions.

RQ2: What is the effort in time for setting the first break-650

point in relation to the debugging task’s elapsed time?

For each session, we normalized the data using Equa-
tion 1 and associated the ratios with their respective task
elapsed times. Figure 5 combines the data from the debug-
ging sessions, each point in the plot represents a debug-655

ging session with a specific rate of breakpoints per minute.
Analysing the first breakpoint data, we found a correlation
between task elapsed time and time of the first breakpoint
(ρ = −0.47), resulting that task elapsed time is inversely
correlated to the time of task’s first breakpoint:660

f(x) =
α

xβ
(2)

where α = 12 and β = 0.44.�
�

�
�

We observe that when developers toggle break-
points carefully, they complete tasks faster than
developers who set breakpoints quickly.

This finding also corroborates previous results found
with a different set of tasks [17].665

9

http://www.pdfsam.org/
https://code.google.com/p/raptor-chess-interface/

Figure 5: Relation between time of the first breakpoint and task elapsed time (data from the two studies)

RQ3: Are there consistent, common trends with respect
to the types of statements on which developers set break-
points?

We classified the types of statements on which the par-
ticipants set their breakpoints, and analysed each break-670

point. For Study 1, Table 3 shows for example that 53%
(111/207) of the breakpoints are set on call statements
while only 1% (3/207) are set on while-loop statements.
For Study 2, Table 4 shows similar trends: 43% (43/100)
of breakpoints are set on call statements and only 4%675

(3/207) on while-loop statements. The only difference is
on assignment statements, where in Study 1 we found 17%
while Study 2 showed 27%. After grouping if-statement,
return, and while-loop into control-flow statements, we
found that 30% of breakpoints are on control-flow state-680

ments while 53% are on call statements, and 17% on
assignments.

Table 3: Study 1 - Breakpoints per type of statement

Statements Numbers of Breakpoints %

call 111 53

if-statement 39 19

assignment 36 17

return 18 10

while-loop 3 1

Table 4: Study 2 - Breakpoints per type of statement

Statements Numbers of Breakpoints %

call 43 43

if-statement 22 22

assignment 27 27

return 4 4

while-loop 4 4

�

�

�

Our results show that in both studies, 50% of
the breakpoints were set on call statements while
control-flow related statements were comparatively
fewer, being the while-loop statement the least
common (2-4%)

RQ4: Are there consistent, common trends with respect
to the lines, methods, or classes on which developers set685

breakpoints?

We investigated each breakpoint to assess whether there
were breakpoints on the same line of code for different
participants, performing the same tasks, i.e., resolving the
same fault, by comparing the breakpoints on the same task690

and different tasks. We sorted all the breakpoints from our

10

data by the Class in which they were set and line number,
and we counted how many times a breakpoint was set on
exactly the same line of code across participants. We re-
port the results in Table 5 for Study 1 and in Tables 6 and695

7 for Study 2.
In Study 1, we found 15 lines of code with two or more

breakpoints on the same line for the same task by differ-
ent participants. In Study 2, we observed breakpoints on
exactly the same lines for eight lines of code in PDFSaM700

and six in Raptor. For example, in Study 1, on line 969 in
Class BasePanel, participants set a breakpoint on:

JabRefDesktop.openExternalViewer(metaData(),

link.toString(), field);

Three different participants set three breakpoints on705

that line for issue 667. Tables 5, 6, and 7 report all re-
curring breakpoints. These observations show that par-
ticipants do not choose breakpoints purposelessly, as sug-
gested by Tiarks and Röhm [15]. We suggest that there is
an underlying rationale on that decision because different710

participants set breakpoints on exactly the same lines of
code.

Table 5: Study 1 - Breakpoints in the same line of code (JabRef)
by task

Tasks Classes Lines of Code Breakpoints

0318 AuthorsFormatter 43 5

0318 AuthorsFormatter 131 3

0667 BasePanel 935 2

0667 BasePanel 969 3

0667 JabRefDesktop 430 2

0669 OpenDatabaseAction 268 2

0669 OpenDatabaseAction 433 4

0669 OpenDatabaseAction 451 4

0993 EntryEditor 717 2

0993 EntryEditor 720 2

0993 EntryEditor 723 2

0993 BibDatabase 187 2

0993 BibDatabase 456 2

1026 EntryEditor 1184 2

1026 BibtexParser 160 2

When analysing Table 8, we found 135 lines of code
having two or more breakpoints for different tasks by dif-
ferent participants. For example, five different participants715

set five breakpoints on the line of code 969 in Class BaseP-
anel independently of their tasks (in that case for three

Table 6: Study 2 - Breakpoints in the same line of code (PdfSam)

Classes Lines of Code Breakpoints

PdfReader 230 2

PdfReader 806 2

PdfReader 1923 2

ConsoleServicesFacade 89 2

ConsoleClient 81 2

PdfUtility 94 2

PdfUtility 96 2

PdfUtility 102 2

Table 7: Study 2 - Breakpoints in the same line of code (Raptor)

Classes Lines of Code Breakpoints

icsUtils 333 3

Game 1751 2

ExamineController 41 2

ExamineController 84 3

ExamineController 87 2

ExamineController 92 2

different tasks). This result suggests a potential oppor-
tunity to recommend those locations as candidates for new
debugging sessions.720

We also analysed if the same class received breakpoints
for different tasks. We grouped all breakpoints by class
and counted how many breakpoints were set on the classes
for different tasks, putting “Yes” if a type had a break-
point, producing Table 9. We also counted the numbers725

of breakpoints by type, and how many participants set
breakpoints on a type.

For Study 1, we observe that ten classes received break-
points in different tasks by different participants, result-
ing in 77% (160/207) of breakpoints. For example, class730

BibtexParser had 21% (44/207) of breakpoints in 3 out
of 5 tasks by 13 different participants. (This analysis only
applies to Study 1 because Study 2 has only one task per
system, thus not allowing to compare breakpoints across
tasks.)735

Finally, we count how many breakpoints are in the
same method across tasks and participants, indicating that
there were “preferred” methods for setting breakpoints, in-
dependently of task or participant. We find that 37 meth-
ods received at least two breakpoints, and 13 methods re-740

ceived five or more breakpoints during different tasks by
different developers, as reported in Figure 6. In particular,
the method EntityEditor.storeSource received 24 break-

11

Figure 6: Methods with 5 or more breakpoints

Table 8: Study 1 - Breakpoints in the same line of code (JabRef) in
all tasks

Classes Lines of Code Breakpoints

BibtexParser 138,151,159 2,2,2

160,165,168 3,2,3

176,198,199,299 2,2,2,2

EntryEditor 717,720,721 3,4,2

723,837,842 2,3,2

1184,1393 3,2

BibDatabase 175,187,223,456 2,3,2,6

OpenDatabaseAction 433,450,451 4,2,4

JabRefDesktop 40,84,430 2,2,3

SaveDatabaseAction 177,188 4,2

BasePanel 935,969 2,5

AuthorsFormatter 43,131 5,4

EntryTableTransferHandler 346 2

FieldTextMenu 84 2

JabRefFrame 1119 2

JabRefMain 8 5

URLUtil 95 2

points, and the method BibtexParser.parseFileContent re-
ceived 20 breakpoints by different developers on different745

tasks.�
�

�
�

Our results suggest that developers do not choose
breakpoints lightly and there is a rationale in
their setting breakpoints

, because different developers set breakpoints on the same
line of code for the same task, and different developers set

breakpoints on the same type or method for different tasks.750

Furthermore, our results show that different developers,
for different tasks, set breakpoints at the same locations.
These results show the usefulness of collecting and sharing
breakpoints to assist developers during maintenance tasks.

6. Evaluation of Swarm Debugging using GV755

To assess other benefits that our approach can bring to
developers, we conducted a controlled experiment and in-
terviews focusing on analysing debugging behaviors from
30 professional developers. We intended to evaluate if
sharing information obtained in previous debugging ses-760

sions supports debugging tasks. We wish to answer the
following two research questions:

RQ5: Is Swarm Debugging’s Global View useful in terms
of supporting debugging tasks?

RQ6: Is Swarm Debugging’s Global View useful in terms765

of sharing debugging tasks?

6.1. Study design

The study consisted of two parts: (1) a qualitative eval-
uation using GV in a browser and (2) a controlled exper-
iment on fault location tasks in a Tetris program, using770

GV integrated into Eclipse. The planning, realization and
some results are presented in the following sections.

6.1.1. Subject System

For this qualitative evaluation, we chose JabRef20 as
subject system. JabRef is a reference management soft-775

ware developed in Java. It is open-source, and its faults
are publicly reported. Moreover, JabRef is of reasonably
good quality.

20http://www.jabref.org/

12

http://www.jabref.org/

Table 9: Study 1 - Breakpoints by class across different tasks

Types Issue 318 Issue 667 Issue 669 Issue 993 Issue 1026 Breakpoints Dev. Diversities

SaveDatabaseAction Yes Yes Yes 7 2

BasePanel Yes Yes Yes Yes 14 7

JabRefDesktop Yes Yes 9 4

EntryEditor Yes Yes Yes 36 4

BibtexParser Yes Yes Yes 44 6

OpenDatabaseAction Yes Yes Yes 19 13

JabRef Yes Yes Yes 3 3

JabRefMain Yes Yes Yes Yes 5 4

URLUtil Yes Yes 4 2

BibDatabase Yes Yes Yes 19 4

6.1.2. Participants

Figure 7: Java expertise

To reproduce a realistic industry scenario, we recruited780

30 professional freelancer developers21, being 23 male and
seven female. Our participants have on average six years
of experience in software development (st. dev. four years).
They have in average 4.8 years of Java experience (st. dev.
3.3 years), and 97% used Eclipse. As shown in Figure 7,785

67% are advanced or experts on Java.
Among these professionals, 23 participated in a qual-

itative evaluation (qualitative evaluation of GV), and 11
participated in fault location (controlled experiment - 7
control and 6 experiment) using the Swarm Debugging790

Global View (GV) in Eclipse.

6.1.3. Task Description

We chose debugging tasks to trigger the participants’
debugging sessions. We asked participants to find the loca-
tions of true faults in JabRef. We picked 5 faults reported795

against JabRef v3.2 in its issue-tracking system, i.e., Is-
sues 318, 993, 1026, 1173, 1235 and 1251. We asked partic-
ipants to find the locations of the faults, asking questions

21https://www.freelancer.com/

as Where was the fault for Task 318?, or For Task 1173,
where would you toggle a breakpoint to fix the fault?, and800

about positive and negative aspects of GV. Finally, the
participants answered an evaluation survey, using Likert
scale and open questions22.

6.1.4. Artifacts and Working Environment

After the subject’s profile survey, we provided artifacts805

to support the two phases of our evaluation. For phase
one, we provided an electronic form with instructions to
follow and questions to answer. The GV was available at
http://server.swarmdebugging.org/. For phase two,
we provided participants with two instruction documents.810

The first document was an experiment tutorial23 that ex-
plained how to install and configure all tools to perform a
warm-up task, and the experimental study. We also used
the warm-up task to confirm that the participants’ envi-
ronment was correctly configured and that the participants815

understood the instructions. The warm-up task was de-
scribed using a video to guide the participants. We make
this video available on-line24. The second document was
an electronic form to collect the results and other assess-
ments made using the integrated GV.820

For this experimental study, we used Eclipse Mars 2
and Java 8, the SDI with GV and its Swarm Debugging
Tracer plug-in, and two Java projects: a small Tetris game
for the warm-up task and JabRef v3.2 for the experimen-
tal study. All participants received the same workspace,825

provided by our artifact repository.

22The full qualitative evaluation survey is available on https://

goo.gl/forms/c6lOS80TgI3i4tyI2.
23http://swarmdebugging.org/publications/experiment/

tutorial.html
24https://youtu.be/U1sBMpfL2jc

13

https://www.freelancer.com/
http://server.swarmdebugging.org/
https://goo.gl/forms/c6lOS80TgI3i4tyI2
https://goo.gl/forms/c6lOS80TgI3i4tyI2
http://swarmdebugging.org/publications/experiment/tutorial.html
http://swarmdebugging.org/publications/experiment/tutorial.html
https://youtu.be/U1sBMpfL2jc

6.1.5. Study Procedure

The qualitative evaluation consisted of a set of ques-
tions about JabRef issues, using GV on a regular Web
browser without accessing the JabRef source code. We830

asked the participants to identify the “type” (classes) in
which the faults were located for Issues 318, 667, and 669,
using only the GV. We required an explanation for each
answer. In addition to providing information about the
usefulness of the GV for task comprehension, this evalua-835

tion helped the participants to become familiar with the
GV.

The controlled experiment was a fault-location task, in
which we asked the same participants to find the location
of faults using the GV integrated into their Eclipse IDE.840

We divided the participants into two groups: a control
group (seven participants) and an experimental group (six
participants). Participants from the control group per-
formed fault location for Issues 993 and 1026 without
using the GV while those from the experimental group845

did the same tasks using the GV.

6.1.6. Data Collection

In the qualitative evaluation, the participants answered
the questions directly in an electronic form. They used
the GV available on-line25 with collected data for JabRef850

Issues 318, 667, 669.
In the controlled experiment, each participant executed

the warm-up task. This task consisted in starting a debug-
ging session, toggling a breakpoint, and debugging a Tetris
program to locate a given method. After the warm-up855

task, each participant executed debugging sessions to find
the location of the faults described in the five issues. We
set a time constraint of one hour. We asked participants
to control their fatigue, asking them to go to the next task
if they felt tired while informing us of this situation in860

their reports. Finally, each participant filled a report to
provide answers and other information like whether they
completed the tasks successfully or not, and (just for the
experimental group) commenting on the usefulness of GV
during each task.865

All services were available on our server26 during the
debugging sessions, and the experimental data were col-
lected within three days. We also captured video from the
participants, obtaining more than 3 hours of debugging.
The experiment tutorial contained the instruction to in-870

stall and set the Open Broadcaster Software 27 for video
recording tool.

6.2. Results

We now discuss the results of our evaluation.

25http://server.swarmdebugging.org/
26http://server.swarmdebugging.org
27OBS is available on https://obsproject.com/.

RQ5: Is Swarm Debugging’s Global View useful in terms875

of supporting debugging tasks?

During the qualitative evaluation, we asked the partic-
ipants to analyse the graph generated by GV to identify
the type of the location of each fault, without reading
the task description or looking at the code. The880

GV generated graph had invocations collected from previ-
ous debugging sessions. We analysed results obtained for
Tasks 318, 667, and 699, comparing the number of partici-
pants who could propose a solution and the correctness of
the solutions.885

For Task 318 (Figure 8), 95% of participants (22/23)
could suggest a “candidate” type for the location of the
fault, just by using the GV view. Among these partic-
ipants, 52% (12/23) suggested correctly Authors-
Formatter as the problematic type.890

For Task 667 (Figure 9), 95% of participants (22/23)
could suggest a “candidate” type for the problematic code,
just analysing the graph provided by the GV. Among these
participants, 31% (7/23) suggested correctly that
URLUtil was the problematic type.895

Finally, for Task 669 (Figure 10), again 95% of partic-
ipants (22/23) could suggest a “candidate” for the type
in the problematic code, just by looking at the GV. How-
ever, none of them (i.e., 0% (0/23)) provided the correct
answer, which was OpenDatabaseAction.900

�

�

�

Our results show that combining stepping paths in
a graph visualisation from several debugging ses-
sions help developers produce correct hypotheses
about fault locations without see the code previ-
ously.

RQ6: Is Swarm Debugging’s Global View useful in terms
of sharing debugging tasks?

We analysed each video recording and searched for ev-
idence of GV utilisation during fault-locations tasks. Our905

controlled experiment showed that 100% of participants
of the experimental group used GV to support their tasks
(video recording analysis), navigating, reorganizing, and,
especially, diving into the type double-clicking on a se-
lected type. We asked participants if GV is useful to sup-910

port software maintenance tasks. We report that 87% of
participants agreed that GV is useful or very use-
ful (100% at least useful) through our qualitative study
(Figure 11) and 75% of participants claimed that GV
is useful or very useful (100% at least useful) on the915

task survey after fault-location tasks (Figure 12). Further-
more, several participants’ feedback supports our answers.

The analysis of our results suggests that GV is useful
to support software-maintenance tasks.

14

http://server.swarmdebugging.org/
http://server.swarmdebugging.org
https://obsproject.com/

Figure 8: GV for Task 0318

Figure 9: GV for Task 0667

�
�

�
�

Sharing previous debugging sessions supports de-
bugging hypotheses and, consequently, reduces the
effort on searching of code.

920

6.3. Comparing Results from the Control and Experimen-
tal Groups

We compared the control and experimental groups us-
ing three metrics: (1) the time for setting the first break-
point; (2) the time to start a debugging session; and, (3)925

the elapsed time to finish the task. We analysed record-
ing sessions of Tasks 0993 and 1026, compiling the average
results from the two groups in Table 10.

Observing the results in Table 10, we observed that the
experimental group spent more time to set the first break-930

point (26% more time for Task 0993 and 77% more time
for Task 1026). The times to start a debugging session
are nearly the same (12% more time for Task 0993 and
18% less time for Task 1026) when compared to the con-
trol group. However, participants who used our approach935

spent less time to finish both tasks (47% less time to
Task 0993 and 17% less time for Task 1026). This result

Figure 10: GV for Task 0669

suggests that participants invested more time to toggle
carefully the first breakpoint but consecutively completed
the tasks faster than participants who toggled breakpoints940

quickly, corroborating our results in RQ2.�

�

�

�

Our results show that participants who used the
shared debugging data invested more time to de-
cide the first breakpoint but reduced their time
to finish the tasks. These results suggest that
sharing debugging information using Swarm De-
bugging can reduce the time spent on debugging
tasks.

6.4. Participants’ Feedback

As with any visualisation technique proposed in the
literature, ours is a proof of concept with both intrinsic945

and accidental advantages and limitations. Intrinsic ad-
vantages and limitations pertain to the visualisation it-
self and our design choices, while accidental advantages
and limitations concern our implementation. During our
experiment, we collected the participants’ feedback about950

our visualisation and now discuss both its intrinsic and ac-
cidental advantages and limitations as reported by them.

15

Table 10: Results from control and experimental groups (average)

Task 0993

Metric Control [C] Experiment [E] ∆ [C-E] (s) % [E/C]

First breakpoint 00:02:55 00:03:40 -44 126%

Time to start 00:04:44 00:05:18 -33 112%

Elapsed time 00:30:08 00:16:05 843 53%

Task 1026

Metric Control [C] Experiment [E] ∆ [C-E] (s) % [E/C]

First breakpoint 00:02:42 00:04:48 -126 177%

Time to start 00:04:02 00:03:43 19 92%

Elapsed time 00:24:58 00:20:41 257 83%

Figure 11: GV usefulness - experimental phase one

We go back to some of the limitations in the next section
that describes threats to the validity of our experiment.
We also report feedback from three of the participants.955

6.4.1. Intrinsic Advantage

Visualisation of Debugging Paths. Participants commen-
ded our visualisation for presenting useful information re-
lated to the classes and methods followed by other de-
velopers during debugging. In particular, one participant960

reported that “[i]t seems a fairly simple way to visual-
ize classes and to demonstrate how they interact.”, which
comforts us in our choice of both the visualisation tech-
nique (graphs) and the data to display (developers’ de-
bugging paths).965

Effort in Debugging. Three participants also mentioned
that our visualisation shows where developers spent their
debugging effort and where there are understanding “bot-
tlenecks”. In particular, one participant wrote that our
visualisation “allows the developer to skip several steps970

Figure 12: GV usefulness - experimental phase two

in debugging, knowing from the graph where the problem
probably comes from.”

6.4.2. Intrinsic Limitations

Location. One participant commented that “the location
where [an] issue occurs is not the same as the one that975

is responsible for the issue.” We are well aware of this
difference between the location where a fault occurs, for
example, a null-pointer exception, and the location of the
source of the fault, for example, a constructor where the
field is not initialised.”980

However, we build our visualisation on the premise that
developers can share their debugging activities for that
particular reason: by sharing, they could readily identify
the source of a fault rather than only the location where
it occurs. We plan to perform further studies to assess985

the usefulness of our visualisation to validate (or not) our
premise.

Scalability. Several participants commented on the possi-
ble lack of scalability of our visualisation. Graphs are well
known to be not scalable, so we are expecting issues with990

16

larger graphs [34]. Strategies to mitigate these issues in-
clude graph sampling and clustering. We plan to add these
features in the next release of our technique.

Presentation. Several participants also commented on the
(relative) lack of information brought by the visualisation,995

which is complementary to the limitation in scalability.
One participant commented on the difference between

the graph showing the developers’ paths and the rela-
tive importance of classes during execution. Future work
should seek to combine both information on the same1000

graph, possibly by combining size and colours: size could
relate to the developers’ paths while colours could indicate
the “importance” of a class during execution.

Evolution. One participant commented that the graph is
relevant for one version of the system but that, as soon as1005

some changes are performed by a developer, the paths (or
parts thereof) may become irrelevant.

We agree with the participant and accept this limita-
tion because our visualisation is currently implemented for
one version. We will explore in future work how to han-1010

dle evolution by changing the graph as new versions are
created.

Trap. One participant warned that our visualisation could
lead developers into a “trap” if all developers whose paths
are displayed followed the “wrong” paths. We agree with1015

the participant but accept this limitation because devel-
opers can always choose appropriate paths.

Understanding. One participant reported that the visual-
isation alone does not bring enough information to under-
stand the task at hand. We accept this limitation because1020

our visualisation is built to be complementary to other
views available in the IDE.

6.4.3. Accidental Advantages

Reducing Code Complexity. One participant discussed the
use of our visualisation to reduce code complexity for the1025

developers by highlighting its main functionalities.

Complementing Differential Views. Another participant
contrasted our visualisation with Git Diff and mentioned
that they complement each other well because our visuali-
sation “[a]llows to quickly see where the problem probably1030

has been before it got fixed.” while Git Diff allows seeing
where the problem was fixed.

Highlighting Refactoring Opportunities. A third partici-
pant suggested that the larger node could represent classes
that could be refactored if they also have many faults, to1035

simplify future debugging sessions for developers.

6.4.4. Accidental Limitations

Presentation. Several participants commented on the pre-
sentation of the information by our visualisation. Most
importantly, they remarked that identifying the location1040

of the fault was difficult because there was no distinction
between faulty and non-faulty classes. In the future, we
will assess the use of icons and–or colours to identify faulty
classes/methods.

Others commented on the lack of captions describing1045

the various visual elements. Although this information
was present in the tutorial and questionnaires, we will add
it also into the visualisation, possibly using tooltips.

One participant added that more information, such
as “execution time metrics [by] invocations” and “fail-1050

ure/success rate [by] invocations” could be valuable. We
plan to perform other controlled experiments with such
additional information to assess its impact on developers’
performance.

Finally, one participant mentioned that arrows would1055

sometimes overlap, which points to the need for a better
layout algorithm for the graph in our visualisation. How-
ever, finding a good graph layout is a well-known difficult
problem.

Navigation. One participant commented that the visuali-1060

sation does not help developers navigating between classes
whose methods have low cohesion. It should be possible to
show in different parts of the graph the methods and their
classes independently to avoid large nodes. We plan to
modify the graph visualisation to have a “method-level”1065

view whose nodes could be methods and–or clusters of
methods (independently of their classes).

6.4.5. General Feedback

Three participants left general feedback regarding their
experience with our visualisation under the question “De-1070

scribe your debugging experience”. All three participants
provided positive comments. We report herein one of the
three comments:

It went pretty well. In the beginning I was at
a loss, so just was looking around for some1075

time. Then I opened the breakpoints view for
another task that was related to file parsing in
the hope to find some hints. And indeed I’ve
found the BibtexParser class where the method
with the most number of breakpoints was the1080

one where I later found the fault. However,
only this knowledge was not enough, so I had
to study the code a bit. Luckily, it didn’t re-
quire too much effort to spot the problem be-
cause all the related code was concentrated in-1085

side the parser class. Luckily I had a BibTeX
database at hand to use it for debugging. It was
excellent.

This comment highlights the advantages of our ap-
proach and suggests that our premise may be correct and1090

17

that developers may benefit from one another’s debugging
sessions. It encourages us to pursue our research work
in this direction and perform more experiments to point
further ways of improving our approach.

7. Discussion1095

We now discuss some implications of our work for Soft-
ware Engineering researchers, developers, debuggers’ de-
velopers, and educators. SDI (and GV) is open and freely
available on-line28, and researchers can use them to per-
form new empirical studies about debugging activities.1100

Developers can use SDI to record their debug-
ging patterns to identify debugging strategies that are
more efficient in the context of their projects to improve
their debugging skills.

Developers can share their debugging activities,1105

such as breakpoints and–or stepping paths, to improve
collaborative work and ease debugging. While develop-
ers usually work on specific tasks, there are sometimes
re-open issues and–or similar tasks that need to under-
stand or toggle breakpoints on the same entity. Thus,1110

using breakpoints previously toggled by a developer could
help to assist another developer working on a similar task.
For instance, the breakpoint search tools can be used to re-
trieve breakpoints from previous debugging sessions, which
could help speed up a new one, providing developers with1115

valid starting points. Therefore, the breakpoint searching
tool can decrease the time spent to toggle a new break-
point.

Developers of debuggers can use SDI to un-
derstand developers’ debugging habits to create new1120

tools – using novel data-mining techniques – to integrate
different data sources. SDI provides a transparent frame-
work for developers to share debugging information, cre-
ating a collective intelligence about their projects.

Educators can leverage SDI to teach interac-1125

tive debugging techniques, tracing their students’ de-
bugging sessions, and evaluating their performance. Data
collected by SDI from debugging sessions performed by
professional developers could also be used to educate stu-
dents, e.g., by showing them examples of good and bad1130

debugging patterns.
There are locations (line of code, class, or method) on

which there were set many breakpoints in different tasks
by different developers, and this is an opportunity to rec-
ommend those locations as candidates for new debugging1135

sessions. However, we could face the bootstrapping prob-
lem: we cannot know that these locations are important
until developers start to put breakpoints on them. This
problem could be addressed with time, by using the in-
frastructure to collect and share breakpoints, accumulat-1140

ing data that can be used for future debugging sessions.
Further, such incremental usefulness can encourage more

28http://github.com/swarmdebugging

developers to collect and share breakpoints, possibly lead-
ing to better-automated recommendations.

We have answered what debugging information is use-1145

ful to share among developers to ease debugging with evi-
dence that sharing debugging breakpoints and sessions can
ease developers’ debugging activities. Our study provides
useful insights to researchers and tool developers on how
to provide appropriate support during debugging activities1150

in general: they could support developers by sharing other
developers’ breakpoints and sessions. They could also de-
velop recommender systems to help developers in deciding
where to set breakpoints,and use this evidence to build a
grounded theory on the setting of breakpoints and step-1155

ping by developers to improve debuggers and other tool
support.

8. Threats to Validity

Despite its promising results, there exist threats to the
validity of our study that we discuss in this section.1160

As any other empirical study, ours is subject to limi-
tations that threaten the validity of its results. The first
limitation is related to the number of participants we had.
With 7 participants, we can not claim generalization of
the results. However, we accept this limitation because1165

the goal of the study was to show the effectiveness of the
data collected by the SDI to obtain insights about devel-
opers’ debugging activities. Future studies with a more
significant number of participants and more systems and
tasks are needed to confirm the results of the present re-1170

search.
Other threats to the validity of our study concern their

internal, external, and conclusion validity. We accept these
threats because the experimental study aimed to show the
effectiveness of the SDI to collect and share data about1175

developers’ interactive debugging activities. Future work
is needed to perform in-depth experimental studies with
these research questions and others, possibly drawn from
the ones that developers asked in another study by Sillito
et al. [35].1180

Construct Validity Threats are related to the met-
rics used to answer our research questions. We mainly used
breakpoint locations, which is a precise measure. More-
over, as we located breakpoints using our Swarm Debug-
ging Infrastructure (SDI) and visualisation, any issue with1185

this measure would affect our results. To mitigate these
threats, we collected both SDI data and video captures
of the participants’ screens and compared the information
extracted from the videos with the data collected by the
SDI. We observed that the breakpoints collected by the1190

SDI are exactly those toggled by the participants.
We ask participants to self-report on their efforts dur-

ing the tasks, levels of experience, etc. through question-
naires. Consequently, it is possible that the answer does
not represent their real efforts, levels, etc. We accept1195

this threat because questionnaires are the best means to

18

http://github.com/swarmdebugging

collect data about participants without incurring a high
cost. Construct validity could be improved in future work
by using instruments to measure effort independently, for
example, but this would lead to more time- and effort-1200

consuming experiments.
Conclusion Validity Threats concern the relations

found between independent and dependent variables. In
particular, they concern the assumptions of the statistical
tests performed on the data and how diverse is the data.1205

We did not perform any statistical analysis to answer our
research questions, so our results do not depend on any
statistical assumption.

Internal Validity Threats are related to the tools
used to collect the data and the subject systems, and if1210

the collected data is sufficient to answer the research ques-
tions. We collected data using our visualisation. We are
well aware that our visualisation does not scale for large
systems but, for JabRef, it allowed participants to share
paths during debugging and researchers to collect relevant1215

data, including shared paths. We plan to revise our vi-
sualisation in the near future to identify possibilities to
improve it so that it scales up to large systems.

Each participant performed more than one task on the
same system. It is possible that a participant may have1220

become familiar with the system after executing a task
and would be knowledgeable enough to toggle breakpoints
when performing the subsequent ones. However, we did
not observe any significant difference in performance when
comparing the results for the same participant for the first1225

and last task. Therefore, we accept this threat but still
plan for future studies with more tasks on more systems.
The participants probably were aware of the fact that all
faults were already solved in Github. We controlled this
issue using the video recordings, observing that all par-1230

ticipants did not look at the commit history during the
experiment.

External Validity Threats are about the possibility
to generalise our results. We use only one system (JabRef)
in our controlled experiment because we needed to have1235

enough data points from a single system to assess the ef-
fectiveness of breakpoint prediction. We should collect
more data on other systems and check whether the system
used can affect our results.

9. Related work1240

We now summarise works related to debugging to al-
low better positioning of our study among the published
research.

Program Understanding. Previous work studied program
comprehension and provided tools to support program com-1245

prehension. Maalej et al. [36] observed and surveyed de-
velopers during program comprehension activities. They
concluded that developers need runtime information and
reported that developers frequently execute programs us-
ing a debugger. Ko et al. [37] observed that developers1250

spend large amounts of times navigating between program
elements.

Feature and fault location approaches are used to iden-
tify and recommend program elements that are relevant to
a task at hand [38]. These approaches use defect report1255

[39], domain knowledge [40], version history and defect
report similarity [38] while others, like Mylyn [41], use de-
velopers’ interaction traces, which have been used to study
work interruption [42], editing patterns [43, 44], program
exploration patterns [45], or copy/paste behaviour [46].1260

Despite sharing similarities (tracing developer events
in an IDE), our approach differs from Mylyn’s [41]. First,
Mylyn’s approach does not collect or use any dynamic de-
bugging information; it is not designed to explore the dy-
namic behaviours of developers during debugging sessions.1265

Second, it is useful in editing mode, because it just filters
files in an Eclipse view following a previous context. Our
approach is for editing mode (finding breakpoints or visu-
alize paths) as during interactive debugging sessions. Con-
sequently, our work and Mylyn’s are complementary, and1270

they should be used together during development sessions.

Debugging Tools for Program Understanding. Romero et
al. [47] extended the work by Katz and Anderson [48]
and identified high-level debugging strategies, e.g., step-
ping and breaking execution paths and inspecting variable1275

values. They reported that developers use the information
available in the debuggers differently depending on their
background and level of expertise.

DebugAdvisor [49] is a recommender system to improve
debugging productivity by automating the search for sim-1280

ilar issues from the past.
Zayour [20] studied the difficulties faced by developers

when debugging in IDEs and reported that the features of
the IDE affect the times spent by developers on debugging
activities.1285

Automated debugging tools. Automated debugging tools
require both successful and failed runs and do not support
programs with interactive inputs [6]. Consequently, they
have not been widely adopted in practice. Moreover, auto-
mated debugging approaches are often unable to indicate1290

the “true” locations of faults [7]. Other more interactive
methods, such as slicing and query languages, help devel-
opers but, to date, there has been no evidence that they
significantly ease developers’ debugging activities.

Recent studies showed that empirical evidence of the1295

usefulness of many automated debugging techniques is lim-
ited [50]. Researchers also found that automated debug-
ging tools are rarely used in practice [50]. At least in some
scenarios, the time to collect coverage information, manu-
ally label the test cases as failing or passing, and run the1300

calculations may exceed the actual time saved by using the
automated debugging tools.

Advanced Debugging Approaches. Zheng et al. [51] pre-
sented a systematic approach to the statistical debugging

19

of programs in the presence of multiple faults, using prob-1305

ability inference and common voting framework to accom-
modate more general faults and predicate settings. Ko and
Myers [6, 52] introduced interrogative debugging, a process
with which developers ask questions about their programs
outputs to determine what parts of the programs to un-1310

derstand.
Pothier and Tanter [29] proposed Omniscient debug-

gers, an approach to support back-in-time navigation across
previous program states. Delta debugging [53] by Hofer et
al. means that the smaller the failure-inducing input, the1315

less program code is covered. It can be used to minimise
a failure-inducing input systematically. Ressia [54] pro-
posed object-centric debugging, focusing on objects as the
key abstraction execution for many tasks.

Estler et al. [55] discussed collaborative debugging sug-1320

gesting that collaboration in debugging activities is per-
ceived as important by developers and can improve their
experience. Our approach is consistent with this finding
although we use asynchronous debugging sessions.

Empirical Studies on Debugging. Jiang et al. [33] studied1325

the change impact analysis process that should be done
during software maintenance by developers to make sure
changes do not introduce new faults. They conducted two
studies about change impact analysis during debugging
sessions. They found that the programmers in their stud-1330

ies did static change impact analysis before they made
changes by using IDE navigational functionalities. They
also did dynamic change impact analysis after they made
changes by running the programs. In their study, pro-
grammers did not use any change impact analysis tools.1335

Zhang et al. [14] proposed a method to generate break-
points based on existing fault localization techniques, show-
ing that the generated breakpoints can usually save some
human effort for debugging.

10. Conclusion1340

Debugging is an important and challenging task in soft-
ware maintenance, requiring dedication and expertise. How-
ever, despite its importance, developers’ debugging behav-
iors have not been extensively and comprehensively stud-
ied. In this paper, we introduced the concept of Swarm De-1345

bugging based on the fact that developers, performing dif-
ferent debugging sessions build collective knowledge. We
asked what debugging information is useful to share among
developers to ease debugging. We particularly studied two
pieces of debugging information: breakpoints (and their1350

locations) and sessions (debugging paths), because these
pieces of information are related to the two main activi-
ties during debugging: setting breakpoints and stepping
in/over/out statements.

To evaluate the usefulness of Swarm Debugging and the1355

sharing of debugging data, we conducted two observational
studies. In the first study, to understand how developers
set breakpoints, we collected and analyzed more than 10

hours of developers’ videos in 45 debugging sessions per-
formed by 28 different, independent developers, containing1360

307 breakpoints on three software systems.
The first study allowed us to draw four main conclu-

sions. At first, setting the first breakpoint is not an easy
task and developers need tools to locate the places where
to toggle breakpoints. Secondly, the time of setting the1365

first breakpoint is a predictor for the duration of a de-
bugging task independently of the task. Third, developers
choose breakpoints purposefully, with an underlying ratio-
nale, because different developers set breakpoints on the
same line of code for the same task, and also, different de-1370

velopers toggle breakpoints on the same classes or methods
for different tasks, showing the existence of important “de-
bugging hot-spots” (i.e., regions in the code where there
is more incidence of debugging events) and–or more error-
prone classes and methods. Finally and surprisingly, dif-1375

ferent, independent developers set breakpoints at the same
locations for similar debugging tasks and, thus, collecting
and sharing breakpoints could assist developers during de-
bugging task.

Further, we conducted a qualitative study with 23 pro-1380

fessional developers and a controlled experiment with 13
professional developers, collecting more than 3 hours of de-
velopers’ debugging sessions. From this second study, we
concluded that: (1) combining stepping paths in a graph
visualisation from several debugging sessions produced el-1385

ements to support developers’ hypotheses about fault lo-
cations without looking at the code previously; and (2)
sharing previous debugging sessions support debugging hy-
pothesis, and consequently reducing the effort on searching
of code.1390

In this paper, we have different experiments (obser-
vational studies and a controlled experiment) that sug-
gest whether developers choose carefully their breakpoints,
their choice reduced their times to complete the tasks. In-
deed, we did not measure how much effort developers spent1395

searching the code. Using our tools in a controlled exper-
iment does not mean that developers were not searching
in the code (they most likely did), but our results suggest
that they searched the code in less time than the control
group. More experiments are in progress to increase the1400

reliability of current results.
Our results provide evidence that previous debugging

sessions provide insights to and can be starting points for
developers when building debugging hypotheses. They
showed that developers construct correct hypotheses on1405

fault location when looking at graphs built from previous
debugging sessions. Moreover, they showed that devel-
opers can use past debugging sessions to identify starting
points for new debugging sessions. Furthermore, faults are
recurrent and may be reopened sometime months later.1410

Sharing debugging sessions (as Mylyn for editing sessions)
is an approach to support debugging hypotheses and to
support the reconstruction of the complex mental model
processes involved in debugging. However, research work
is in progress to corroborate these results.1415

20

In future work, we plan to build grounded theories
on the use of breakpoints by developers. We will use
these theories to recommend breakpoints to other devel-
opers. Developers need tools to locate adequate places to
set breakpoints in their source code. Our results suggest1420

the opportunity for a breakpoint recommendation system,
similar to previous work [14]. They could also form the ba-
sis for building a grounded theory of the developers’ use of
breakpoints to improve debuggers and other tool support.

Moreover, we also suggest that debugging tasks could1425

be divided into two activities, one of locating bugs,
which could benefit from the collective intelligence of other
developers and could be performed by dedicated “hunters”,
and another one of fixing the faults, which requires deep
understanding of the program, its design, its architecture,1430

and the consequences of changes. This latter activity could
be performed by dedicated “builders”. Hence, actionable
results include recommender systems and a change of paradigm
in the debugging of software programs.

Last but not least, the research community can lever-1435

age the SDI to conduct more studies to improve our under-
standing of developers’ debugging behaviour, which could
ultimately result into the development of whole new fami-
lies of debugging tools that are more efficient and–or more
adapted to the particularity of debugging. Many open1440

questions remain, and this paper is just a first step to-
wards fully understanding how collective intelligence could
improve debugging activities.

Our vision is that IDEs should incorporate a general
framework to capture and exploit IDE interactions, creat-1445

ing an ecosystem of context-aware applications and plug-
ins. Swarm Debugging is the first step towards intelligent
debuggers and IDEs, context-aware programs that moni-
tor and reason about how developers interact with them,
providing for crowd software-engineering.1450

11. Acknowledgment

This work has been partially supported by the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC), the Brazilian research funding agencies CNPq
(National Council for Scientific and Technological Devel-1455

opment), and CAPES Foundation (Finance Code 001).
We also acknowledge all the participants in our experi-
ments and the insightful comments from the anonymous
reviewers.

References1460

[1] A. S. Tanenbaum, W. H. Benson, The people’s time sharing
system, Software: Practice and Experience 3 (2) (1973) 109–
119. doi:10.1002/spe.4380030204.

[2] H. Katso, sdb: a symbolic debugger, in: Unix Programmer’s
Manual, Bell Telephone Laboratories, Inc., 1979, p. N/A.1465

[3] M. A. Linton, The evolution of dbx, in: Proceedings of the
Summer USENIX Conference, 1990, pp. 211–220.

[4] R. Stallman, S. Shebs, Debugging with GDB - The GNU Source-
Level Debugger, GNU Press, 2002.

[5] P. Wainwright, GNU DDD - Data Display Debugger (2010).1470

[6] A. Ko, Debugging by asking questions about program output,
Proceeding of the 28th international conference on Software en-
gineering - ICSE ’06 (2006) 989doi:10.1145/1134285.1134471.

[7] J. Rößler, How helpful are automated debugging tools?, in: 2012
1st International Workshop on User Evaluation for Software1475

Engineering Researchers, USER 2012 - Proceedings, 2012, pp.
13–16. doi:10.1109/USER.2012.6226573.

[8] T. D. LaToza, B. a. Myers, Developers ask reachability ques-
tions, 2010 ACM/IEEE 32nd International Conference on Soft-
ware Engineering 1 (2010) 185–194. doi:10.1145/1806799.1480

1806829.
[9] A. J. Ko, H. H. Aung, B. A. Myers, Eliciting design require-

ments for maintenance-oriented ides: a detailed study of cor-
rective and perfective maintenance tasks, in: Proceedings. 27th
International Conference on Software Engineering, 2005. ICSE1485

2005., 2005, pp. 126–135. doi:10.1109/ICSE.2005.1553555.
[10] T. D. LaToza, G. Venolia, R. DeLine, Maintaining mental mod-

els: a study of developer work habits, in: ICSE, 2006, pp. 492–
501.

[11] W. Maalej, R. Tiarks, T. Roehm, R. Koschke, On the Com-1490

prehension of Program Comprehension, ACM Transactions on
Software Engineering and Methodology 23 (4) (2014) 1–37.
doi:10.1145/2622669.

[12] M.-A. Storey, L. Singer, B. Cleary, F. Figueira Filho, A. Za-
galsky, The (R) Evolution of social media in software engineer-1495

ing, in: Proceedings of the on Future of Software Engineering -
FOSE 2014, ACM Press, New York, New York, USA, 2014, pp.
100–116. doi:10.1145/2593882.2593887.

[13] M. Beller, N. Spruit, A. Zaidman, How developers debug (2017).
URL https://doi.org/10.7287/peerj.preprints.2743v11500

[14] C. Zhang, J. Yang, D. Yan, S. Yang, Y. Chen, Automated
Breakpoint Generation for Debugging, Journal of Software
86 (3) (2013) 603–616. doi:10.4304/jsw.8.3.603-616.

[15] R. Tiarks, T. Röhm, Challenges in Program Comprehension,
Softwaretechnik-Trends 32 (2) (2013) 19–20. doi:10.1007/1505

BF03323460.
URL http://link.springer.com/10.1007/BF03323460

[16] F. Petrillo, G. Lacerda, M. Pimenta, C. Freitas, Visualiz-
ing interactive and shared debugging sessions, in: 2015 IEEE
3rd Working Conference on Software Visualization (VISSOFT),1510

IEEE, 2015, pp. 140–144. doi:10.1109/VISSOFT.2015.7332425.
[17] F. Petrillo, Z. Soh, F. Khomh, M. Pimenta, C. Freitas, Y.-G.

Guéhéneuc, Towards understanding interactive debugging, in:
In Proceedings of the 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), 2016, p. 10.1515

[18] F. Petrillo, H. Mandian, A. Yamashita, F. Khomh, Y. G.
Guéhéneuc, How do developers toggle breakpoints? observa-
tional studies, in: 2017 IEEE International Conference on Soft-
ware Quality, Reliability and Security (QRS), 2017, pp. 285–
295. doi:10.1109/QRS.2017.39.1520

[19] K. Araki, Z. Furukawa, J. Cheng, A general framework for de-
bugging, Software, IEEE 8 (3) (1991) 14–20. doi:10.1109/52.

88939.
[20] I. Zayour, A. Hamdar, A qualitative study on debugging un-

der an enterprise IDE, Information and Software Technology 701525

(2016) 130–139. doi:10.1016/j.infsof.2015.10.010.
[21] R. Chern, K. De Volder, Debugging with control-flow break-

points, in: Proceedings of the 6th International Conference
on Aspect-oriented Software Development, AOSD ’07, ACM,
New York, NY, USA, 2007, pp. 96–106. doi:10.1145/1218563.1530

1218575.
URL http://doi.acm.org/10.1145/1218563.1218575

[22] Eclipse, Managing conditional breakpoints.
URL http://help.eclipse.org/neon/index.jsp?topic=

%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_1535

conditional_breakpoint.htm&cp=1_3_6_0_5

[23] S. Garnier, J. Gautrais, G. Theraulaz, The biological principles
of swarm intelligence, Swarm Intelligence 1 (1) (2007) 3–31.
doi:10.1007/s11721-007-0004-y.

[24] W. R. Tschinkel, The architecture of subterranean ant nests:1540

21

http://dx.doi.org/10.1002/spe.4380030204
http://dx.doi.org/10.1145/1134285.1134471
http://dx.doi.org/10.1109/USER.2012.6226573
http://dx.doi.org/10.1145/1806799.1806829
http://dx.doi.org/10.1145/1806799.1806829
http://dx.doi.org/10.1145/1806799.1806829
http://dx.doi.org/10.1109/ICSE.2005.1553555
http://dx.doi.org/10.1145/2622669
http://dx.doi.org/10.1145/2593882.2593887
https://doi.org/10.7287/peerj.preprints.2743v1
https://doi.org/10.7287/peerj.preprints.2743v1
http://dx.doi.org/10.4304/jsw.8.3.603-616
http://link.springer.com/10.1007/BF03323460
http://dx.doi.org/10.1007/BF03323460
http://dx.doi.org/10.1007/BF03323460
http://dx.doi.org/10.1007/BF03323460
http://link.springer.com/10.1007/BF03323460
http://dx.doi.org/10.1109/VISSOFT.2015.7332425
http://dx.doi.org/10.1109/QRS.2017.39
http://dx.doi.org/10.1109/52.88939
http://dx.doi.org/10.1109/52.88939
http://dx.doi.org/10.1109/52.88939
http://dx.doi.org/10.1016/j.infsof.2015.10.010
http://doi.acm.org/10.1145/1218563.1218575
http://doi.acm.org/10.1145/1218563.1218575
http://doi.acm.org/10.1145/1218563.1218575
http://dx.doi.org/10.1145/1218563.1218575
http://dx.doi.org/10.1145/1218563.1218575
http://dx.doi.org/10.1145/1218563.1218575
http://doi.acm.org/10.1145/1218563.1218575
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_conditional_breakpoint.htm&cp=1_3_6_0_5
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_conditional_breakpoint.htm&cp=1_3_6_0_5
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_conditional_breakpoint.htm&cp=1_3_6_0_5
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_conditional_breakpoint.htm&cp=1_3_6_0_5
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_conditional_breakpoint.htm&cp=1_3_6_0_5
http://help.eclipse.org/neon/index.jsp?topic=%2Forg.eclipse.jdt.doc.user%2Ftasks%2Ftask-manage_conditional_breakpoint.htm&cp=1_3_6_0_5
http://dx.doi.org/10.1007/s11721-007-0004-y
"http://dx.doi.org/10.1007/s10818-015-9203-6 http://link.springer.com/10.1007/s10818-015-9203-6
"http://dx.doi.org/10.1007/s10818-015-9203-6 http://link.springer.com/10.1007/s10818-015-9203-6

beauty and mystery underfoot, Journal of Bioeconomics 17 (3)
(2015) 271–291. doi:10.1007/s10818-015-9203-6.
URL "http://dx.doi.org/10.1007/s10818-015-9203-6http:

//link.springer.com/10.1007/s10818-015-9203-6

[25] T. Ball, S. Eick, Software visualization in the large, Computer1545

29 (4) (1996) 33–43. doi:10.1109/2.488299.
[26] A. Cockburn, Agile Software Development: The Cooperative

Game, Second Edition, Addison-Wesley Professional, 2006.
[27] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector,

S. D. Fleming, How programmers debug, revisited: An infor-1550

mation foraging theory perspective, IEEE Transactions on Soft-
ware Engineering 39 (2) (2013) 197–215. doi:10.1109/TSE.

2010.111.
[28] D. Piorkowski, S. D. Fleming, C. Scaffidi, M. Burnett, I. Kwan,

A. Z. Henley, J. Macbeth, C. Hill, A. Horvath, To fix or to1555

learn? how production bias affects developers’ information for-
aging during debugging, in: 2015 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), 2015,
pp. 11–20. doi:10.1109/ICSM.2015.7332447.

[29] G. Pothier, É. Tanter, Back to the Future: Omniscient De-1560

bugging, IEEE Software 26 (6) (2009) 78–85. doi:10.1109/MS.
2009.169.
URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.

htm?arnumber=5287015

[30] M. Beller, N. Spruit, D. Spinellis, A. Zaidman, On the di-1565

chotomy of debugging behavior among programmers, in: 40th
International Conference on So ware Engineering, ICSE, 2018,
pp. 572–583.

[31] D. Grove, G. DeFouw, J. Dean, C. Chambers, Call graph con-
struction in object-oriented languages, Proceedings of the 12th1570

ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications - OOPSLA ’97 (1997)
108–124doi:10.1145/263698.264352.
URL http://portal.acm.org/citation.cfm?doid=263698.

2643521575

[32] R. Saito, M. E. Smoot, K. Ono, J. Ruscheinski, P.-l. Wang,
S. Lotia, A. R. Pico, G. D. Bader, T. Ideker, A travel guide
to Cytoscape plugins., Nature methods 9 (11) (2012) 1069–76.
doi:10.1038/nmeth.2212.
URL http://www.pubmedcentral.nih.gov/articlerender.1580

fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract

[33] S. Jiang, C. McMillan, R. Santelices, Do programmers do
change impact analysis in debugging?, Empirical Software En-
gineering (2016) 1–39doi:10.1007/s10664-016-9441-9.

[34] R. Pienta, J. Abello, M. Kahng, D. H. Chau, Scalable graph1585

exploration and visualization: Sensemaking challenges and op-
portunities, in: 2015 International Conference on Big Data
and Smart Computing (BIGCOMP), IEEE, 2015, pp. 271–278.
doi:10.1109/35021BIGCOMP.2015.7072812.

[35] J. Sillito, G. C. Murphy, K. D. Volder, Asking and answering1590

questions during a programming change task, IEEE Transac-
tions on Software Engineering 34 (4) (2008) 434–451.

[36] W. Maalej, R. Tiarks, T. Roehm, R. Koschke, On the compre-
hension of program comprehension, ACM Transactions on Soft-
ware Engineering and Methodology 23 (4) (2014) 31:1–31:37.1595

doi:10.1145/2622669.
URL http://doi.acm.org/10.1145/2622669

[37] A. J. Ko, B. A. Myers, M. J. Coblenz, H. H. Aung, An ex-
ploratory study of how developers seek, relate, and collect rel-
evant information during software maintenance tasks, IEEE1600

Transaction on Software Engineering 32 (12) (2006) 971–987.
[38] S. Wang, D. Lo, Version history, similar report, and structure:

putting them together for improved bug localization, in: Pro-
ceedings of the 22nd International Conference on Program Com-
prehension - ICPC 2014, ACM Press, New York, New York,1605

USA, 2014, pp. 53–63. doi:10.1145/2597008.2597148.
[39] J. Zhou, H. Zhang, D. Lo, Where should the bugs be fixed?

More accurate information retrieval-based bug localization
based on bug reports, in: 2012 34th International Confer-
ence on Software Engineering (ICSE), IEEE, 2012, pp. 14–24.1610

doi:10.1109/ICSE.2012.6227210.

[40] X. Ye, R. Bunescu, C. Liu, Learning to rank relevant files for bug
reports using domain knowledge, in: Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations of
Software Engineering - FSE 2014, ACM Press, New York, New1615

York, USA, 2014, pp. 689–699. doi:10.1145/2635868.2635874.
[41] M. Kersten, G. C. Murphy, Using task context to improve pro-

grammer productivity, in: Proceedings of the 14th ACM SIG-
SOFT international symposium on Foundations of software en-
gineering, 2006, pp. 1–11.1620

[42] H. Sanchez, R. Robbes, V. M. Gonzalez, An empirical study
of work fragmentation in software evolution tasks, in: Software
Analysis, Evolution and Reengineering (SANER), 2015 IEEE
22nd International Conference on, 2015, pp. 251–260.

[43] A. Ying, M. Robillard, The influence of the task on programmer1625

behaviour, in: Proceedings International Conference on Pro-
gram Comprehension, 2011, pp. 31–40.

[44] F. Zhang, F. Khomh, Y. Zou, A. E. Hassan, An empirical study
of the effect of file editing patterns on software quality, in: Pro-
ceedings Working Conference on Reverse Engineering, 2012, pp.1630

456–465.
[45] Z. Soh, F. Khomh, Y.-G. Guéhéneuc, G. Antoniol, B. Adams,

On the effect of program exploration on maintenance tasks, in:
Reverse Engineering (WCRE), 2013 20th Working Conference
on, 2013, pp. 391–400. doi:10.1109/WCRE.2013.6671314.1635

[46] T. M. Ahmed, W. Shang, A. E. Hassan, An empirical study of
the copy and paste behavior during development, in: Mining
Software Repositories (MSR), 2015 IEEE/ACM 12th Working
Conference on, 2015, pp. 99–110. doi:10.1109/MSR.2015.17.

[47] P. Romero, B. du Boulay, R. Cox, R. Lutz, S. Bryant, Debug-1640

ging strategies and tactics in a multi-representation software en-
vironment, International Journal of Human-Computer Studies
65 (12) (2007) 992–1009. doi:10.1016/j.ijhcs.2007.07.005.

[48] I. Katz, J. Anderson, Debugging: An Analysis of Bug-Location
Strategies, Human-Computer Interaction 3 (4) (1987) 351–399.1645

doi:10.1207/s15327051hci0304{_}2.
[49] B. Ashok, J. Joy, H. Liang, S. K. Rajamani, G. Srinivasa,

V. Vangala, DebugAdvisor: A Recommender System for De-
bugging, in: Proceedings of the 7th joint meeting of the Euro-
pean software engineering conference and the ACM SIGSOFT1650

symposium on The foundations of software engineering on Eu-
ropean software engineering conference and foundations of soft-
ware engineering symposium - E, ACM Press, New York, New
York, USA, 2009, p. 373. doi:10.1145/1595696.1595766.

[50] C. Parnin, A. Orso, Are automated debugging techniques ac-1655

tually helping programmers?, Proceedings of the 2011 Interna-
tional Symposium on Software Testing and Analysis ISSTA 11
(2011) 199doi:10.1145/2001420.2001445.

[51] A. X. Zheng, M. I. Jordan, B. Liblit, M. Naik, A. Aiken, Sta-
tistical Debugging : Simultaneous Identification of Multiple1660

Bugs, Challenges 148 (2006) 1105–1112. doi:10.1145/1143844.
1143983.

[52] A. Ko, B. A. Myers, Finding Causes of Program Output with
the Java Whyline, in: ACM (Ed.), CHI 2009 - Proceedings
of the SIGCHI Conference on Human Factors in Computing1665

Systems, New York, New York, USA, 2009, pp. 1569–1578. doi:
10.1145/1518701.1518942.

[53] B. Hofer, F. Wotawa, Combining slicing and constraint solving
for better debugging: the CONBAS approach, Advances in Soft-
ware Engineering 2012 (2012) 13. doi:10.1155/2012/628571.1670

[54] J. Ressia, A. Bergel, O. Nierstrasz, Object-centric debugging,
in: Proceedings - International Conference on Software Engi-
neering, 2012, pp. 485–495. doi:10.1109/ICSE.2012.6227167.

[55] H. C. Estler, M. Nordio, C. a. Furia, B. Meyer, Collaborative
debugging, Proceedings - IEEE 8th International Conference on1675

Global Software Engineering, ICGSE 2013 (2013) 110–119doi:
10.1109/ICGSE.2013.21.

[56] S. Demeyer, S. Ducasse, M. Lanza, A hybrid reverse engineer-
ing approach combining metrics and program visualization, in:
Proceedings of the Sixth Working Conference on Reverse Engi-1680

neering, WCRE ’99, IEEE Computer Society, Washington, DC,
USA, 1999, pp. 175–.

22

"http://dx.doi.org/10.1007/s10818-015-9203-6 http://link.springer.com/10.1007/s10818-015-9203-6
http://dx.doi.org/10.1007/s10818-015-9203-6
"http://dx.doi.org/10.1007/s10818-015-9203-6 http://link.springer.com/10.1007/s10818-015-9203-6
"http://dx.doi.org/10.1007/s10818-015-9203-6 http://link.springer.com/10.1007/s10818-015-9203-6
"http://dx.doi.org/10.1007/s10818-015-9203-6 http://link.springer.com/10.1007/s10818-015-9203-6
http://dx.doi.org/10.1109/2.488299
http://dx.doi.org/10.1109/TSE.2010.111
http://dx.doi.org/10.1109/TSE.2010.111
http://dx.doi.org/10.1109/TSE.2010.111
http://dx.doi.org/10.1109/ICSM.2015.7332447
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5287015
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5287015
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5287015
http://dx.doi.org/10.1109/MS.2009.169
http://dx.doi.org/10.1109/MS.2009.169
http://dx.doi.org/10.1109/MS.2009.169
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5287015
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5287015
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5287015
http://portal.acm.org/citation.cfm?doid=263698.264352
http://portal.acm.org/citation.cfm?doid=263698.264352
http://portal.acm.org/citation.cfm?doid=263698.264352
http://dx.doi.org/10.1145/263698.264352
http://portal.acm.org/citation.cfm?doid=263698.264352
http://portal.acm.org/citation.cfm?doid=263698.264352
http://portal.acm.org/citation.cfm?doid=263698.264352
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1038/nmeth.2212
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3649846&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1007/s10664-016-9441-9
http://dx.doi.org/10.1109/35021BIGCOMP.2015.7072812
http://doi.acm.org/10.1145/2622669
http://doi.acm.org/10.1145/2622669
http://doi.acm.org/10.1145/2622669
http://dx.doi.org/10.1145/2622669
http://doi.acm.org/10.1145/2622669
http://dx.doi.org/10.1145/2597008.2597148
http://dx.doi.org/10.1109/ICSE.2012.6227210
http://dx.doi.org/10.1145/2635868.2635874
http://dx.doi.org/10.1109/WCRE.2013.6671314
http://dx.doi.org/10.1109/MSR.2015.17
http://dx.doi.org/10.1016/j.ijhcs.2007.07.005
http://dx.doi.org/10.1207/s15327051hci0304{_}2
http://dx.doi.org/10.1145/1595696.1595766
http://dx.doi.org/10.1145/2001420.2001445
http://dx.doi.org/10.1145/1143844.1143983
http://dx.doi.org/10.1145/1143844.1143983
http://dx.doi.org/10.1145/1143844.1143983
http://dx.doi.org/10.1145/1518701.1518942
http://dx.doi.org/10.1145/1518701.1518942
http://dx.doi.org/10.1145/1518701.1518942
http://dx.doi.org/10.1155/2012/628571
http://dx.doi.org/10.1109/ICSE.2012.6227167
http://dx.doi.org/10.1109/ICGSE.2013.21
http://dx.doi.org/10.1109/ICGSE.2013.21
http://dx.doi.org/10.1109/ICGSE.2013.21
http://dl.acm.org/citation.cfm?id=832306.837044
http://dl.acm.org/citation.cfm?id=832306.837044
http://dl.acm.org/citation.cfm?id=832306.837044

URL http://dl.acm.org/citation.cfm?id=832306.837044

[57] D. Piorkowski, S. Fleming, The whats and hows of program-
mers’ foraging diets, in: Proceedings of the SIGCHI Conference1685

on Human Factors in Computing Systems CHI ’13, ACM, Paris,
France, 2013, pp. 3063—-3072. doi:10.1145/2466416.2466418.
URL http://dl.acm.org/citation.cfm?id=2466418

[58] S. D. Fleming, C. Scaffidi, D. Piorkowski, M. Burnett, R. Bel-
lamy, J. Lawrance, I. Kwan, An Information Foraging The-1690

ory Perspective on Tools for Debugging, Refactoring, and
Reuse Tasks, ACM Transactions on Software Engineering
and Methodology 22 (2) (2013) 1–41. doi:10.1145/2430545.

2430551.

Appendix - Implementation of Swarm Debugging1695

Swarm Debugging Services

The Swarm Debugging Services (SDS) provide the in-
frastructure needed by the Swarm Debugging Tracer (SDT)
to store and, later, share debugging data from and between
developers. Figure 13 shows the architecture of this in-1700

frastructure. The SDT sends RESTful messages that are
received by a SDS instance that stores them in three spe-
cialized persistence mechanisms: an SQL database (Post-
greSQL), a full-text search engine (ElasticSearch), and a
graph database (Neo4J).1705

Figure 13: The Swarm Debugging Services architecture

The three persistence mechanisms use similar sets of
concepts to define the semantics of the SDT messages.

We choose and define domain concepts to model soft-
ware projects and debugging data. Figure 14 shows the
meta-model of these concepts using an entity-relationship1710

representation. The concepts are inspired by the FAMIX
Data model [56]. The concepts include:

• Developer is a SDT user. She creates and executes
debugging sessions.

• Product is the target software product. A product1715

is a set of Eclipse projects (1 or more).

• Task is the task to be executed by developers.

• Session represents a Swarm Debugging session. It
relates developer, project, and debugging events.

Figure 14: The Swarm Debugging metadata [17]

• Type represents classes and interfaces in the project.1720

Each type has a source code and a file. SDS only
considers types that have source code available as
belonging to the project domain.

• Method is a method associated with a type, which
can be invoked during debugging sessions.1725

• Namespace is a container for types. In Java, names-
paces are declared with the keyword package.

• Invocation is a method invoked from another method
(or from the JVM, in case of the main method).

• Breakpoint represents the data collected when a1730

developer toggles a breakpoint in the Eclipse IDE.
Each breakpoint is associated with a type and a
method if appropriate.

• Event is an event data that is collected when a de-
veloper performs some actions during a debugging1735

session.

The SDS provides several services for manipulating,
querying, and searching collected data: (1) Swarm REST-
ful API; (2) SQL query console; (3) full-text search API;
(4) dashboard service; and (5) graph querying console.1740

Swarm RESTful API. The SDS provides a RESTful API
to manipulate debugging data using the Spring Boot frame-
work29. Create, retrieve, update, and delete operations
are available through HTTP requests and respond with a
JSON structure. For example, upon submitting the HTTP1745

request:

http://swarmdebugging.org/developers/

search/findByName?name=petrillo

the SDS responds with a list of developers whose names
are “petrillo”, in JSON format.1750

29http://projects.spring.io/spring-boot/

23

http://dl.acm.org/citation.cfm?id=832306.837044
http://dl.acm.org/citation.cfm?id=2466418
http://dl.acm.org/citation.cfm?id=2466418
http://dl.acm.org/citation.cfm?id=2466418
http://dx.doi.org/10.1145/2466416.2466418
http://dl.acm.org/citation.cfm?id=2466418
http://dx.doi.org/10.1145/2430545.2430551
http://dx.doi.org/10.1145/2430545.2430551
http://dx.doi.org/10.1145/2430545.2430551
http://projects.spring.io/spring-boot/

SQL Query Console. The SDS provides a console30 to re-
ceive SQL queries (SQL) on the debugging data, providing
relational aggregations and functions.

Full-text Search Engine. The SDS also provides an Elas-
ticSearch31, which is a highly scalable open-source full-text1755

search and analytic engine, to store, search, and analyse
the debugging data. The SDS instantiates an instance of
the ElasticSearch engine and offers a console for executing
complex queries on the debugging data.

Dashboard Service. The ElasticSearch allows the use of the1760

Kibana dashboard. The SDS exposes a Kibana instance
on the debugging data. With the dashboard, researchers
can build charts describing the data. Figure 15 shows a
Swarm Dashboard embedded into Eclipse as a view.

Figure 15: Swarm Debugging Dashboard

Graph Querying Console. The SDS also persists debug-1765

ging data in a Neo4J32 graph database. Neo4J provides
a query language named Cypher, which is a declarative,
SQL-inspired language for describing patterns in graphs.
It allows researchers to express what they want to select,
insert, update, or delete from a graph database without1770

describing precisely how to do it. The SDS exposes the
Neo4J Browser and creates an Eclipse view.

Figure 16 shows an example of Cypher query and the
resulting graph.

Swarm Debugging Tracer1775

Swarm Debugging Tracer (SDT) is an Eclipse plug-
in that listens to debugger events during debugging ses-
sions, extending the Java Platform Debugging Architec-
ture (JDPA). Using the Eclipse JPDA, events are listened
by our DebugTracer that implements two listeners:1780

IDebugEventSetListener and IBreakpointListener. Fig-
ure 17 shows the SDT architecture.

30http://db.swarmdebugging.org
31https://www.elastic.co/
32http://neo4j.com/

After an authentication process, developers create a de-
bugging session using the Swarm Manager view and tog-
gle breakpoints, trigger stepping events as Step Into, Step1785

Over or Step Return. These events are caught and stack
trace items are analyzed by the Tracer, extracting method
invocations.

To use the SDT, a developer must open the view “Swarm
Manager” and establish a connection with the Swarm De-1790

bugging Services. If the target project is not into the
Swarm Manager, she can associate any project in her work-
space into Swarm Manager (as shown in Figure 18). This
association consists of linking a Swarm Session with a
project in the Eclipse workspace. Second, she must create1795

a Swarm session. Once a session is established, she can
use any feature of the regular Eclipse debugger, the SDT
collects developers’ interaction events in the background,
with no visible performance decrease.

Typically, the developer will toggle some breakpoints1800

to stop the execution of the program of interest at locations
deemed relevant to fix the fault at hand. The SDT col-
lects the data associated to these breakpoints (locations,
conditions, and so on). After toggling breakpoints, the
developer runs the program in debug mode. The program1805

stops at the first reached breakpoint. Consequently, for
each event, such as Step Into or Breakpoint, the SDT cap-
tures the event and related data. It also stores data about
methods called, storing invocations entry for each pair in-
voking/invoked method. Following the foraging approach1810

[57], the SDT only collects invoking/invoked methods that
were visited by the developer during the debugging session,
ignoring other invocations. The debugging activity contin-
ues until the program run finishes. The Swarm session is
then completed.1815

To avoid performance and memory issues, the SDT col-
lects and sends the data using a set of specialised Domain-
Services that send RESTful messages to a SwarmRestFa-
cade, connecting to the Swarm Debugging Services.

Swarm Debugging Views1820

On top of the SDS, the SDI implements and proposes
several tools to search and visualise the data collected dur-
ing debugging sessions. These tools are integrated in the
Eclipse IDE, simplifying their usage. They include, but
are not limited to the followings.1825

Sequence Stack Diagrams.. Sequence stack diagrams are
novel diagrams [16] to represent sequences of method in-
vocations, as shown by Figure 20. They use circles to
represent methods and arrows to represent invocations.
Each line is a complete stack trace, without returns. The1830

first node is a starting method (non-invoked method) and
the last node is an ending method (non-invoking method).
If an invocation chain contains a non-starting method, a
new line is created and the actual stack is repeated and a
dotted arrow is used to represent a return for this node,1835

as illustrated by the method Circle.draw in Figure 20. In
addition, developers can directly go to a method in the

24

http://db.swarmdebugging.org
https://www.elastic.co/
http://neo4j.com/

Figure 16: Neo4J Browser - a Cypher query example

Figure 17: The Swarm Tracer architecture [17]

Eclipse Editor by double-clicking over a node in the dia-
gram.

Dynamic Method Call Graphs.. They are direct call graphs1840

[31], as shown in Figure 21, to display the hierarchical
relations between invoked methods. They use circles to
represent methods and oriented arrows to express invoca-
tions. Each session generates a graph and all invocations
collected during the session are shown on these graphs.1845

The starting points (non-invoked methods) are allocated
on top of a tree and adjacent nodes represent invocations
sequences. Researchers can navigate sequences of invoca-
tion methods pressing the F9 (forward) and F10 (back-
ward) keys. They can also directly go to a method in the1850

Eclipse Editor by double-clicking on nodes in the graphs.

Figure 18: The Swarm Manager view

Breakpoint Search Tool

Researchers and developers can use this tool to find
suitable breakpoints [58] when working with the debugger.
For each breakpoint, the SDS captures the type and loca-1855

tion in the type where the breakpoint was toggled. Thus,
developers can share their breakpoints. The breakpoint
search tool allows fuzzy, match, and wildcard ElasticSearch
queries. Results are displayed in the Search View table for
easy selection. Developers can also open a type directly in1860

the Eclipse Editor by double-clicking on a selected break-
point.

Figure 19 shows an example of breakpoint search, in
which the search box contains the misspelled word fcatory.

Starting/Ending Method Search Tool1865

This tool allows searching for methods that (1) only
invoke other methods but that are not explicitly invoked
themselves during the debugging session and (2) that are
only invoked by others but that do not invoke other meth-
ods.1870

25

Figure 19: Breakpoint search tool (fuzzy search example)

Figure 20: Sequence stack diagram for Bridge design pattern

Figure 21: Method call graph for Bridge design pattern [17]

Formally, we define Starting/Ending methods as fol-
lows. Given a graph G = (V,E), where V is a set of
vertexes V = {V1, V2, . . . , Vn} and E is a set of edges
E = {(V1, V2), (V 1, V 3), . . .}. Then, each edge is formed
by a pair: < Vi, Vj >, were Vi is the invoking method and1875

Vj is the invoked method. If α is the subset of all vertexes
invoking methods and β is the subset of all vertexes in-
voked by methods, then the Starting and Ending methods
are:

StartingPoint = {VSP | VSP ∈ α and VSP /∈ β}

EndingPoint = {VEP | VEP ∈ β and VEP /∈ α}

Locating these methods is important in a debugging1880

session because they are the entries and exits points of a
program at runtime.

Summary

Through the SDI, we provide a technique and model to
collect, store and share interactive debugging session data,1885

contextualizing breakpoints and events during these ses-
sions. We created real-time and interactive visualizations
using web technologies, providing an automatic memory
for developer explorations. Moreover, dividing software
exploration by sessions and its call graphs are easy to un-1890

derstand because only intentional visited areas are shown
on these graphs, one can go through the execution of a
project and see only the important areas that are relevant
to developers.

Currently, the Swarm Tracer is implemented in Java,1895

using Eclipse Debug Core services. However, SDI provides
a RESTful API that can be accessed independently, and
new tracers can be implemented for different IDEs or de-
buggers.

26

	Introduction
	Background
	Debugging and Interactive Debugging
	Breakpoints and Supporting Mechanisms
	Self-organization and Swarm Intelligence
	Information Foraging

	The Swarm Debugging Approach
	SDI in a Nutshell
	Swarm Debugging Global View

	Using SDI to Understand Debugging Activities
	Study 1: Observational Study on JabRef
	Subject System
	Participants
	Task Description
	Artifacts and Working Environment
	Study Procedure
	Data Collection

	Study 2: Empirical Study on PDFSaM and Raptor
	Results

	Evaluation of Swarm Debugging using GV
	Study design
	Subject System
	Participants
	Task Description
	Artifacts and Working Environment
	Study Procedure
	Data Collection

	Results
	Comparing Results from the Control and Experimental Groups
	Participants' Feedback
	Intrinsic Advantage
	Intrinsic Limitations
	Accidental Advantages
	Accidental Limitations
	General Feedback

	Discussion
	Threats to Validity
	Related work
	Conclusion
	Acknowledgment

