2019

14" International Conference on Software Technologies

26 - 28 July, 2019 - [PPrague, Czech Republic

Quality aspects of serverless architecture: an exploratory study on
maintainability

Louis Racicot', Nicolas Cloutier!, Julien Abt?Fabio Petrillo?

'Ecole Polytechnique de Montréal, Montréal, Canada

2 Université du Québec a Chicoutimi, Chicoutimi, Canada
{louis.racicot,nicolas.cloutier} @polymtl.com, julien.abtl @uqac.ca,fabio@petrillo.com

UQAC

Dé ment d'informati
tepa';t:’ e tt' d'informatique Commons Attribution-NonCommercial-
et matnematique ShareAlike 3.0 Unported License

Motivation

e As serverless architecture is fairly new, it is yet to be analyzed as a solution.

e In this paper, we of different
serverless projects
e Our main research question is:

Does the serverless impact the maintainability?

e The purpose of this paper is to identify in

serverless based solutions and to uncover those findings for potential future
research.

Serverless Architecture

Serverless Architecture

Serverless architecture is an execution model where the provider dynamically

requested by an application, leasing a

server for a before releasing it for another
application to use it.

The serverless follows a
Serverless architecture is emerging more and more popular as the tools are

becoming and more accessible
Designing an architecture presents many advantages especially for

applications.

Serverless Architecture

i) Aws
D 4 / Notifier

Email
_ Notification Lambda
D
g= .— ¢ . a
=
React > \'5};&
\
OO GetProducts \ ~
. API Gateway Lambda ~ DynamoDBD
Flux = %
8 O
= *é _—— o
@D
Bootstrap CloudWatch Watcher
5 Events Lambda
S
L FRONTEND) g ‘
v BACKEND /

ONLINE STORES

ISO/IEC 25010 - quality model for software products

Software product quality
(1ISO/IEC 25000)
Functional Performance | | ¢ patibilit Usabilit Reliability Securit Maintainability| | Portabilit
suitability efficiency P ¥ Y ¥ v
Functional Time-behaviour Co-existence Appropriateness Maturity Confidentiality Modularity Adaptability
commictaness Resource Interoperability FRcogtlisahiiy Availability Integrity Reusability Installability
it L Learnability Fault tolerance Non-repudiation Analysability Replaceability
COFFectnEss Capacit Operabilit
. pacity P Y Recoverability Accountability Modifiability
Functional User error
appropriateness orotectsn Authenticity Testability

User interface
aesthetics

Accessibility

ISO/IEC 25010 - quality model for software products

Software product quality
(1ISO/I1EC 25000)
| | | | | | T |
Functional Performance s P e z S s
suitability efficiency Compatibility Usability Reliability Security Maintainability Portability
Functional Time-behaviour Co-existence Appropriateness Maturity Confidentiality Modularity Adaptability
commictaness Resource Interoperability FRcogtlisahiiy Availability Integrity Reusability Installability
it L Learnability Fault tolerance Non-repudiation Analysability Replaceability
COFFectnEss Capacit Operabilit
. pacity P Y Recoverability Accountability Modifiability
Functional User error
appropriateness orotectsn Authenticity Testability
User interface
aesthetics
Accessibility
~

Maintainability

Maintainability [ISO 25010, §4.2.7]

“The degree of effectiveness and efficiency with which a product or system can
be modified by the intended maintainers”, where modifications can include
corrections, improvements or adaptation of the software to changes in
environment, and in requirements and functional specifications. It also includes
installation of updates and upgrades. It can be interpreted as either an inherent
capability of the product or system to facilitate maintenance activities, or the
quality in use experienced by the maintainers for the goal of maintaining the
product or system.”

How to determine the
quality characteristics of
maintainability?

How to determine the
quality characteristics of
maintainability?

Measuring a set of software
product properties.

OREILLY"

Building ¥
Maintainable |
Software

TEN GUIDELINES FOR FUTURE-PROOF CODE

Joost Visser

A proposal

10 guidelines to help you write source code that
is easy to modify.

“After 15 years of consulting about software
quality, we at the Software Improvement
Group (SIG) have learned a thing or two about
maintainability.”

12

Main principles behind the SIG’s 10 guidelines

e Maintainability benefits most from adhering to simple guidelines.
e Maintainability is not an afterthought, but should be addressed from the very

beginning of a development project. Every individual contribution counts.

e Some violations are worse than others. The more a software system
complies with the guidelines, the more maintainable it is.

13

The 10 SIG’s guidelines

Write short units of code: shorter units (that is, methods and constructors)
are easier to analyze, test, and reuse.

Write simple units of code: Units with fewer decision points are easier to
analyze and test.

Write code once: duplication of source code should be avoided at all times,
since changes will need to be made in each copy. Duplication is also a source
of regression bugs.

Keep unit interfaces small: units (methods and constructors) with fewer
parameters are easier to test and reuse.

Separate concerns in modules: modules (classes) that are loosely coupled
are easier to modify and lead to a more modular system.

14

The 10 SIG’s guidelines (cont.)

Couple architecture components loosely: top-level components of a
system that are more loosely coupled are easier to modify and lead to a more
modular system.

Keep architecture components balanced: A well-balanced architecture,
with not too many and not too few components, of uniform size, is the most
modular and enables easy modification through separation of concerns.
Keep your codebase small: a large system is difficult to maintain, because
more code needs to be analyzed, changed, and tested. Also, maintenance
productivity per line of code is lower in a large system than in a small system.

15

The 10 SIG’s guidelines (cont.)

Automate development pipeline and tests: automated tests (that is, tests
that can be executed without manual intervention) enable near-instantaneous
feedback on the effectiveness of modifications. Manual tests do not scale.
Write clean code: Having irrelevant artifacts such as TODOs and dead code
in your codebase makes it more difficult for new team members to become
productive. Therefore, it makes maintenance less efficient.

16

7 e ~
Better Code Hub github.com/fabiopetrillo v

iy

Your repositories g, [8] @ z ﬁ

Search

E. Analyzed only E. Hide forks

4 ® B 28 i {{ © W A ® B %8 o {{ ©§

fabiopetrillo/ fabiopetrillo/ \
Codelgniter4 6 tomcat y

Last analyzed: 6 months ago Last analyzed: 7 months ago

N o i 2 N o i >

A ®H BN W T A ®H S {6 W

fabiopetrillo/ fabiopetrillo/

nginx 4 coreutils 5
Last analyzed: 7 months ago Last analyzed: 7 months ago

i e ih 4 i e ih >

17

Study Design

1) Qualitatively discuss possible maintainability and management issues,
formulating hypothesis

2) Extract meaningful metrics from FaaS projects to provide empirical results

3) Compare our discussion with empirical results to evaluate the state of
maintainability

18

Our hypotheses

H1: Software that use serverless technologies have a low module coupling, their
components are well balanced and are independent. Thus, it complies with the
modularity aspect of maintainability.

H2: Software that use serverless technologies have small units of code with a
small interface.

H3: Software that use serverless architecture is easy to analyse.

H4: Software that use serverless technologies tends to be easy to modify
because it has simple units of code and low coupling.

H5: Software that use serverless technologies are easy to test because they have
a small code base, they have simple units of code and they are made of
independent components.

H6: The complexity of deployment of serverless software is harmful for its
maintainability.

19

Analyzed projects

To empirically analyze the impacts of FaaS on the code maintainability, we
analyzed open-source projects from Github using serverless architecture
To test these hypotheses, we manually inspected a curated list of serverless

projects and we filtered them based on the following criteria:

o (1) the project must be based on the function-as-a-Service pattern;
o (2) the project must be of a non-trivial in complexity and in size;
o (3) the project must be analyzable by BetterCodeHub.

To extract the metrics, we used BetterCodeHub, an online static analysis
service whose criteria ares base on guidelines for more maintainable code
[Visser 2016].

20

Better Code Hub github.com/fabiopetril

ur repositories ~ Your results

fabiopetrillo/
MoonMail

Last analysis: 3 minutes ago Branch: master (default)

Compliance

7

&

E Write Short Units of Code s
Write Simple Units of Code Vv

Ao
@ Write Code Once P 4

N ;
E_* Keep Unit Interfaces Small X e

Results

microapps/MoonMail
jonatasschagas/langadventurebackend
craftship/codebox-npm

COk3/session
agentmilindu/Serverless-Pre-Register
haw-itn/serverless-web-monitor
bart-blommaerts/serverless_garage
michalsanger/serverless-facebook-messenger-bot
laardee/serverless-authentication-boilerplate
airbnb/binaryalert

airbnb/streamalert

Netflix/bless

apache/incubator-openwhisk

fnproject/fn

capitalone/cloud-custodian
blockstack/blockstack-core
adieuadieu/serverless-chrome
danilop/LambdAuth
serverless-heaven/serverless-webpack
bcongdon/corral
awslabs/aws-serverless-auth-reference-app
open-lambda/open-lambda
0x4D31/honeyLambda
amplify-education/serverless-domain-manager
awslabs/serverless-photo-recognition
Successes

Failures

25 FaaS Open
Source Systems.

X% XX X X X X KR XK X X KR X XX X X X X X | Write Short Units of Code
NN N2 XXX XXX XN XXX XX K| Keep Unit Interfaces Small

SN XA RUR X AURCCNNSSN S N> XXX % X% K % Write Code Once
CHRINSSSNANNNNNNNSNSNSSSSSSSS NN SN N K| Separate Concerns in Modules
CPHINSSINNNNNNIX IS NSNS SN N XN N K| Couple Architecture Components Loosely
PEIRX AR X CCCNNNNUXCSCS SN S NN N % | Keep Architecture Components Balanced
CHRISSNSSNNNRNNNRNNNNSNSNSNSNS SN NS SN N N[Keep Your Codebase Small
SOXARRRCUR R AU X NS N X XXX (N % Y Automate Tests
PHNINIXCNCCIRACNCNNCNSNSNSSSNS N XN N | Write Clean Code

— \O

N RRRXACUR R R XXX XXXCCNNN XX X K| Write Simple Units of Code
=)

[SSIRS
[S¥]

H OpOD) UBI[D) ALIM [D> S S MH

1S9, drewiony | X S X g

H [[ews aseqopo)) mox doay [S S &
paoueeq siusuodwo)) 21moAyory doay | X S X S
A19s007 syusuodwo)) a1moyory a[dno)y ™S S S N
H SO[NPOJA UI suIouo)) eredag [S S S .&

[rewS sooeiU MU ooy | S S N (o

20U 9po) ALIA |S X N [=

opo)) JO sju) I[dwig ALIM | X X S =

9poD) JO SIU) 1OYS LM | X X X [0

Results

amplify-education/serverless-domain-manager

awslabs/serverless-photo-recognition

0x4D31/honeyLambda

Successes
Failures

3

15 12 16 O

22

H 9pO)) UBI[D) ALIM

SSNS

S1S9], 2jewioIny

X N X

Results

H [[ews aseqopo)) mox doay [S S %HO
paoueeq siusuodwo)) 21moAyory doay | X S X Sk
A19s007 syuouodwio)) a1moIyory 9[dno) S S S &

H SO[NPOJA Ul suIduo)) deredas S S S %H o

[rewS sooeiU MU ooy | S S N (o =
20U 9po) ALIA |S X N [= =
opo)) JO sju) I[dwig ALIM | X X S =24
H 9pOD) JO SITU) MOYS A | X X X [0 &
S
en
<
=
<
:
g =
'3 .S
g
T 8
@K Q
s 8
ER:
5%
£E2 2
i o2 B
> =
g S e
o = O
S 158w
O|lwn O
S23|8 3
B

Results

e Our results show that most of analyzed projects separate concerns in
modules, couple architecture components loosely, keep architecture
components balanced, keep the codebase small, and write clean code

e However 88% (22/25) of analyzed projects do not write short

units of code:

e 60% of projects (15/25) write complex units of code
o 52% (13/25) do not use well automated tests
e 60% (15/25) tend to have complex unit interfaces.

25

Evaluating our
hypotheses

Evaluating our hypotheses

H1: Software that use serverless technologies have a low module coupling, their
components are well balanced and are independent. Thus, it complies with the

modularity aspect of maintainability.

27

Evaluating our hypotheses @

H1: Software that use serverless technologies have a low module coupling, their
components are well balanced and are independent. Thus, it complies with the

modularity aspect of maintainability.

(h
Software that use serverless technologies have a
low module coupling, their components are well
balanced and are independent.

Evaluating our hypotheses

H2: Software that use serverless technologies have small units of code with a
small interface.

29

Evaluating our hypotheses gﬁ

H2: Software that use serverless technologies have small units of code with a
small interface.

Serverless projects tend to have big units of code.

30

Evaluating our hypotheses

H3: Software that use serverless architecture is easy to analyse.

31

Evaluating our hypotheses €A

H3: Software that use serverless architecture is easy to analyse.

As expected, the duplication of code is an issue encountered in our analysis. Half
the projects encountered this problem. As described in H2, the units of code are

big.

;
Analysability may be an issue for serverless ap-

plications.

Evaluating our hypotheses

H4: Software that use serverless technologies tends to be easy to modify because
it has simple units of code and low coupling.

33

Evaluating our hypotheses \@

H4: Software that use serverless technologies tends to be easy to modify because
it has simple units of code and low coupling.

()
It is not clear whether serverless technologies
tend to be easy to modify.

Evaluating our hypotheses

HS: Software that use serverless technologies are easy to test because they have
a small code base, they have simple units of code and they are made of
independent components.

35

Evaluating our hypotheses

Y

HS: Software that use serverless technologies are easy to test because they have
a small code base, they have simple units of code and they are made of
independent components.

-

.

Serverless technologies are easy to test because
they have a small code base and they are made of
independent components. Although tests are not
always automated

~N

J

36

Evaluating our hypotheses

H6: The complexity of deployment of serverless software is harmful for its
maintainability.

37

Evaluating our hypotheses \@

H6: The complexity of deployment of serverless software is harmful for its
maintainability.

7
The deployment of serverless software is in gen-

eral simplified by offering features to ease the de-
ployment.

Recommendations for Serverless/FaaS projects

e FaaSis a good option for CPU intensive tasks and
event-driven applications

e Pay special attention to functions size and code
documentation

e Control code duplication

e Invest effort to automated testing

e Be aware of vendor lock-in issues

39

Daniel Vassallo M
@dvassallo

[t might be tempting to use Lambda & API Gateway
to save $70/mo, but then you're going to have to
write your software to fit a new immature abstraction
and deal with all sorts of limits and constraints.

7125

12:20 AM - Jul 26, 2019 from Seattle, WA - Twitter for iPad

40

Conclusion

Our findings provide the current state of the projects’ maintainability using
serverless architecture

Serverless projects have a low module coupling, their components are
well balanced and are independent

Serverless projects tend to have big units of code

Analysability may be an issue for serverless applications

Serverless projects are easy to test because they have a small code base
and they are made of independent components

Deployment of serverless projects is in general simplified by platform
providers

Serverless configuration management is an

Pay special attention to functions size and documentation

41

Research opportunities/future work

e Serverless performance evaluation in general and between different
providers

o cost/benefit analysis (CBA)
e Serverless reliability evaluation

e Benefits and disadvantages of configuration management for
serverless providers

e Continuous integration evaluation

42

2019

14" International Conference on Software Technologies

26 - 28 July, 2019 - [PPrague, Czech Republic

Quality aspects of serverless architecture: an exploratory study on
maintainability

Louis Racicot', Nicolas Cloutier!, Julien Abt?Fabio Petrillo?

'Ecole Polytechnique de Montréal, Montréal, Canada

2 Université du Québec a Chicoutimi, Chicoutimi, Canada
{louis.racicot,nicolas.cloutier} @polymtl.com, julien.abtl @uqac.ca,fabio@petrillo.com

UQAC

Dé ment d'informati
tepa';t:’ e tt' d'informatique Commons Attribution-NonCommercial-
et matnematique ShareAlike 3.0 Unported License

Analyzability [ISO 25010, §4.2.7.3]

“The degree of effectiveness and efficiency with which it is possible to assess the
impact on a product or system of an intended change to one or more of its
parts, or to diagnose a product for deficiencies or causes of failures, or to
identify parts to be modified”

44

Modifiability [ISO 25010, §4.2.7.4]

“The degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality”

45

Testability [ISO 25010, §4.2.7.5]

“The degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to
determine whether those criteria have been met.”

46

Modularity [ISO 25010, §4.2.7.1]

“The degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on
other components.”

47

Reusability [ISO 25010, §4.2.7.2]

“The degree to which an asset can be used in more than one system, or in
building other assets.”

48

