
This work is licensed under a Creative
Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License

Département d'informatique
et mathématique

Motivation
● As serverless architecture is fairly new, it is yet to be analyzed as a solution.

● In this paper, we analyzed the maintainability of different
serverless projects

● Our main research question is:

Does the serverless impact the maintainability?

● The purpose of this paper is to identify maintainability aspects in
serverless based solutions and to uncover those findings for potential future
research.

2

Serverless Architecture

3

Serverless Architecture
● Serverless architecture is an execution model where the provider dynamically

manage the resources requested by an application, leasing a

server for a small amount of time before releasing it for another
application to use it.

● The serverless follows a pay-per-use business model
● Serverless architecture is emerging more and more popular as the tools are

becoming cheaper and more accessible
● Designing an architecture presents many advantages especially for

computing intensive and event-driven applications.

4

Serverless Architecture

5

ISO/IEC 25010 - quality model for software products

6

ISO/IEC 25010 - quality model for software products

7

Maintainability

8

Maintainability [ISO 25010, §4.2.7]
“The degree of effectiveness and efficiency with which a product or system can
be modified by the intended maintainers”, where modifications can include
corrections, improvements or adaptation of the software to changes in
environment, and in requirements and functional specifications. It also includes
installation of updates and upgrades. It can be interpreted as either an inherent
capability of the product or system to facilitate maintenance activities, or the
quality in use experienced by the maintainers for the goal of maintaining the
product or system.”

9

How to determine the
quality characteristics of

maintainability?

10

How to determine the
quality characteristics of

maintainability?

Measuring a set of software
product properties.

11

10 guidelines to help you write source code that
is easy to modify.

“After 15 years of consulting about software
quality, we at the Software Improvement
Group (SIG) have learned a thing or two about
maintainability.”

A proposal

12

Main principles behind the SIG’s 10 guidelines
● Maintainability benefits most from adhering to simple guidelines.
● Maintainability is not an afterthought, but should be addressed from the very

beginning of a development project. Every individual contribution counts.
● Some violations are worse than others. The more a software system

complies with the guidelines, the more maintainable it is.

13

The 10 SIG’s guidelines
● Write short units of code: shorter units (that is, methods and constructors)

are easier to analyze, test, and reuse.
● Write simple units of code: Units with fewer decision points are easier to

analyze and test.
● Write code once: duplication of source code should be avoided at all times,

since changes will need to be made in each copy. Duplication is also a source
of regression bugs.

● Keep unit interfaces small: units (methods and constructors) with fewer
parameters are easier to test and reuse.

● Separate concerns in modules: modules (classes) that are loosely coupled
are easier to modify and lead to a more modular system.

14

The 10 SIG’s guidelines (cont.)
● Couple architecture components loosely: top-level components of a

system that are more loosely coupled are easier to modify and lead to a more
modular system.

● Keep architecture components balanced: A well-balanced architecture,
with not too many and not too few components, of uniform size, is the most
modular and enables easy modification through separation of concerns.

● Keep your codebase small: a large system is difficult to maintain, because
more code needs to be analyzed, changed, and tested. Also, maintenance
productivity per line of code is lower in a large system than in a small system.

15

The 10 SIG’s guidelines (cont.)
● Automate development pipeline and tests: automated tests (that is, tests

that can be executed without manual intervention) enable near-instantaneous
feedback on the effectiveness of modifications. Manual tests do not scale.

● Write clean code: Having irrelevant artifacts such as TODOs and dead code
in your codebase makes it more difficult for new team members to become
productive. Therefore, it makes maintenance less efficient.

16

17

Study Design
1) Qualitatively discuss possible maintainability and management issues,

formulating hypothesis
2) Extract meaningful metrics from FaaS projects to provide empirical results
3) Compare our discussion with empirical results to evaluate the state of

maintainability

18

Our hypotheses
● H1: Software that use serverless technologies have a low module coupling, their

components are well balanced and are independent. Thus, it complies with the
modularity aspect of maintainability.

● H2: Software that use serverless technologies have small units of code with a
small interface.

● H3: Software that use serverless architecture is easy to analyse.
● H4: Software that use serverless technologies tends to be easy to modify

because it has simple units of code and low coupling.
● H5: Software that use serverless technologies are easy to test because they have

a small code base, they have simple units of code and they are made of
independent components.

● H6: The complexity of deployment of serverless software is harmful for its
maintainability.

19

Analyzed projects
● To empirically analyze the impacts of FaaS on the code maintainability, we

analyzed open-source projects from Github using serverless architecture
● To test these hypotheses, we manually inspected a curated list of serverless

projects and we filtered them based on the following criteria:
○ (1) the project must be based on the function-as-a-Service pattern;
○ (2) the project must be of a non-trivial in complexity and in size;
○ (3) the project must be analyzable by BetterCodeHub.

● To extract the metrics, we used BetterCodeHub, an online static analysis
service whose criteria ares base on guidelines for more maintainable code
[Visser 2016].

20

21

Results

25 FaaS Open
Source Systems.

22

Results

23

Results

24

Results
● Our results show that most of analyzed projects separate concerns in

modules, couple architecture components loosely, keep architecture
components balanced, keep the codebase small, and write clean code

● However 88% (22/25) of analyzed projects do not write short
units of code;

● 60% of projects (15/25) write complex units of code
● 52% (13/25) do not use well automated tests
● 60% (15/25) tend to have complex unit interfaces.

25

Evaluating our
hypotheses

26

Evaluating our hypotheses
H1: Software that use serverless technologies have a low module coupling, their
components are well balanced and are independent. Thus, it complies with the
modularity aspect of maintainability.

27

Evaluating our hypotheses
H1: Software that use serverless technologies have a low module coupling, their
components are well balanced and are independent. Thus, it complies with the
modularity aspect of maintainability.

28

Evaluating our hypotheses
H2: Software that use serverless technologies have small units of code with a
small interface.

29

Evaluating our hypotheses
H2: Software that use serverless technologies have small units of code with a
small interface.

30

Evaluating our hypotheses
H3: Software that use serverless architecture is easy to analyse.

31

Evaluating our hypotheses
H3: Software that use serverless architecture is easy to analyse.

As expected, the duplication of code is an issue encountered in our analysis. Half
the projects encountered this problem. As described in H2, the units of code are
big.

32

Evaluating our hypotheses
H4: Software that use serverless technologies tends to be easy to modify because
it has simple units of code and low coupling.

33

Evaluating our hypotheses
H4: Software that use serverless technologies tends to be easy to modify because
it has simple units of code and low coupling.

34

Evaluating our hypotheses
H5: Software that use serverless technologies are easy to test because they have
a small code base, they have simple units of code and they are made of
independent components.

35

Evaluating our hypotheses
H5: Software that use serverless technologies are easy to test because they have
a small code base, they have simple units of code and they are made of
independent components.

36

Evaluating our hypotheses
H6: The complexity of deployment of serverless software is harmful for its
maintainability.

37

Evaluating our hypotheses
H6: The complexity of deployment of serverless software is harmful for its
maintainability.

38

Recommendations for Serverless/FaaS projects

● FaaS is a good option for CPU intensive tasks and
event-driven applications

● Pay special attention to functions size and code
documentation

● Control code duplication
● Invest effort to automated testing
● Be aware of vendor lock-in issues

39

40

Conclusion
● Our findings provide the current state of the projects’ maintainability using

serverless architecture
● Serverless projects have a low module coupling, their components are

well balanced and are independent
● Serverless projects tend to have big units of code
● Analysability may be an issue for serverless applications
● Serverless projects are easy to test because they have a small code base

and they are made of independent components
● Deployment of serverless projects is in general simplified by platform

providers
● Serverless configuration management is an open question
● Pay special attention to functions size and documentation

41

Research opportunities/future work

● Serverless performance evaluation in general and between different
providers

● cost/benefit analysis (CBA)

● Serverless reliability evaluation

● Benefits and disadvantages of configuration management for
serverless providers

● Continuous integration evaluation

42

This work is licensed under a Creative
Commons Attribution-NonCommercial-

ShareAlike 3.0 Unported License

Département d'informatique
et mathématique

Analyzability [ISO 25010, §4.2.7.3]
“The degree of effectiveness and efficiency with which it is possible to assess the
impact on a product or system of an intended change to one or more of its
parts, or to diagnose a product for deficiencies or causes of failures, or to
identify parts to be modified”

44

Modifiability [ISO 25010, §4.2.7.4]
“The degree to which a product or system can be effectively and efficiently
modified without introducing defects or degrading existing product quality”

45

Testability [ISO 25010, §4.2.7.5]
“The degree of effectiveness and efficiency with which test criteria can be
established for a system, product or component and tests can be performed to
determine whether those criteria have been met.”

46

Modularity [ISO 25010, §4.2.7.1]
“The degree to which a system or computer program is composed of discrete
components such that a change to one component has minimal impact on
other components.”

47

Reusability [ISO 25010, §4.2.7.2]
“The degree to which an asset can be used in more than one system, or in
building other assets.”

48

