
Visualizing sequences of debugging sessions using
Swarm Debugging

Eduardo A. Fontana, Fabio Petrillo
Laboratoire d’Informatique Formelle
Universite du Quebec a Chicoutimi

Chicoutimi, Canada
fontanadnb@gmail.com, fabio@petrillo.com

Abstract—In Software Engineering, one of the most important
activities is debugging. Debugging is a set of techniques to
detect, locate, and correct faults in a computer program. Modern
Integrated Development Environments (IDEs), such as Eclipse
or Visual Studio, provide infrastructure to support interactive
debugging, during which a developer explores the source code
of the system under development or maintenance. Although
IDEs encourage developers to work collaboratively, debugging
is still an individual activity. Furthermore, interactive debugging
activity is limited by IDE debugging features that do not store
previous debugging sessions. This condition forces developers
to repeat debugging execution sessions to review the debugging
information. In this paper, using the concept of Swarm Debugging,
we present the Sequence Debugging Session View (SDV) tool. The
primary goal is to capture the debugging information from a de-
veloper IDE (as Visual Studio) and store it. Then, the tool enables
developers to retrieve the data in 3D interactive visualization and
understand software behavior through the analysis and sharing
of debugging session data. The main contribution of the tool is
to assist on program comprehension and to reduce effort during
software maintenance. To validate the solution, we performed two
usage studies in real situations at a software house. The feedback
from the evaluation of the tool suggests that the team could be
helped on the software arrangement.

Index Terms—Debugging, software visualization, swarm de-
bugging, software comprehension, threejs, 3D visualization.

I. INTRODUCTION

Debugging a software is one of the main activities of
software developers. Developers debug code to find bugs, to
test changes or to understand a software system [1]. Most
of the Integrated Development Environments (IDEs) have an
integrated debugger infrastructure that allows developers to
explore a software line by line, inspect variables, as well as
other features. However, when a debugging session is finished,
the data from the session, such as methods, variables, stepping
code and stack traces, are lost. It happens because the IDEs
do not store the debugging information along the debugging
sessions. This condition forces the developers to repeat the
debugging execution to review the debugging information.
Furthermore, recurring software problems sometimes require
similar debugging sessions, which can be performed at differ-
ent times by different developers, recreating the understanding
of the system architecture from scratch.

In this paper, we present Sequence Debugging Session
View (SDV), a visualization tool based on Swarm Debugging
[2] that captures the debugging data from an IDE debugging

infrastructure, storing it in a database, and promotes the
recovery of this data through 3D visualization. The SDV is an
interactive diagram inspired by the UML sequence diagram
[3] that shows a temporal sequence of events (stepping and
breakpoints) during multiple debugging sessions, allowing the
developer to view and replay a debugging.

The main contribution of this paper is to present a visu-
alization tool that improves developers understanding of a
software system based on previous debugging sessions. The
tool recovers and shares debugging data over time, besides
replaying debugging execution. The debugging data history
and the replay feature provide insights to help developers learn
about software behavior.

This paper is outlined as follows: Section II presents the
Swarm Debugging concepts. Section III details the tool, being
Subsection III-A to present the 3D visualization elements, and
Subsection III-B to show how the solution is structured. Then,
Section IV demonstrates two real cases where the tool was
used. Section V shows the users opinion and a discussion about
the issues that were raised. Section VI contains the conclusion.

II. BACKGROUND

A. Debugging and Interactive Debugging

Debugging is a process where developers make hypotheses
about the root cause of a problem or defect and verify these
hypotheses by examining different parts of the source code of
the program. Interactive debugging consists of using a tool,
i.e., a debugger, to detect, locate, and correct a fault in a
program. It is a process also known as program animation,
stepping, or following execution [4]. Developers often refer
to this process simply as debugging, because several IDEs
provide debuggers to support it. However, it must be noted that
while debugging is the process of finding faults, interactive
debugging is one particular debugging approach in which de-
velopers use interactive tools. Expressions such as interactive
debugging, stepping and debugging are used interchangeably,
and there is not yet a consensus on what is the best name for
this process.

Generally, breakpoints allow pausing intentionally the exe-
cution of a program for debugging purposes. It is a means of
acquiring knowledge about a program during its execution, for
example, to examine the call stack and variable values when
the control flow reaches the locations of the breakpoints. Thus,



a breakpoint indicates the location (line) in the source code of
a program where a pause occurs during its execution.

B. Swarm Debugging

Swarm Debugging (SD) [2], [5] is an approach that uses
swarm intelligence applied to interactive debugging data to
create knowledge to support software development activities.
SD works by (1) capturing debugging contextual information,
(2) sharing it, and (3) reusing it across debugging sessions
and developers. Swarm Debugging emerges from a context
where many developers, performing debugging sessions inde-
pendently, are in fact building collective knowledge, which
can be shared and reused with adequate support. To provide
such support, Swarm Debugging includes Swarm Debugging
Infrastructure (SDI), with which practitioners and researchers
can collect and share data about developers’ interactive debug-
ging sessions.

III. THE TOOL

A. The 3D visualization

Sequence Debugging Session View (SDV) is inspired by
the UML sequence diagram [3]. The view is composed of a
group of objects that represent the sequence diagram disposed
in a 3D structure. Our visualization uses the 3D axes as
follows. First, the Y axis represents the temporal sequence
of events (breakpoint hitting and stepping) in a debugging
session. Second, the X axis represents the sequence of StepInto
calls during the session. Finally, the Z axis represents the
temporal sequence of session debugging to a task. Starting
point (1) indicates where the debugging flow starts. The Base
(2) is the main architecture stack to which the project is
associated, in this case .NetFramework. The Breakpoint (3)
is a sphere that represents the breakpoint added to the IDE
line of code, positioned in the sequence of the debugging
events. The Pathnode (4) represents a sequential path during
an interactive debugging session, i. e., the checkpoints called
nodes through which the debugging session went. The nodes
are composed by events, such as Step events (5), i.e. StepInto,
StepOver and breakpoint addition. Types (6) represent a type,
frequently associated with an object or a procedure file. The
height of the types expands according to the number of events
it represents in the debugging sessions. The Group of types (7)
is a representation of type grouping from the same directory,
package or project.

B. Architecture

We built the SDV solution in two parts. The first one is a
Visual Studio Extension written in C#. The module is based on
Swarm Debugging Infrastructure [5] and it is responsible for
collecting data from debugging sessions of the current project
and sending it over the Internet to the Web Portal. The second
is a Web Portal, also in C#, that serves two purposes. It is
responsible for receiving the debugging session data through a
Web Service and storing it in a database. Besides that, through
the Front-End solution built in Three.js and JavaScript, the
Web Portal allows the developers to retrieve the collected data.

Fig. 1. Visualization elements schema

After retrieving it, the developers can filter the tasks, projects
and session sequences. Then, the SDV shows the debugging
sessions data sequenced in a 3D interactive visualization. In
Fig. 2, we present the high level architecture of SDV, the
extension and the server solution with the Front-End 3D
Visualization.

The SDV Front-end 3D visualization part is a web appli-
cation in JavaScript witch allows the developers of a team to
select the session data of the current work task and analyze
it. As shown in Fig. 6, the left part is a filter (1) that enables
to select debugging sessions by task in the project and by
the developers involved. The sessions to select are presented
in descending order. In each one the amount of breakpoints
and events referred on the view is shown. Breakpoints are
displayed in red spheres and events in green spheres. Beside
them, there is an eye icon that enables hiding or showing the
session loaded on the visualization. Next to the filter is the
view tool box (2). The tool box allows interactive manipulation
of the visualization, such as resetting the camera, moving
objects closer, resizing the scale, hiding or showing elements,
and changing the color pallete and the background color. The
third section is the 3D Visualization (3), composed by loaded
sessions. That visualization is interactive, making it possible
to zoom it in and out, read the session debugging element
information by putting the mouse over it, and select other
elements, such as the types, events or breakpoints. The last
one is the source code (4) associated with the selected type,
event or breakpoint. This section shows the exact source code
captured when and where the debug cursor occurred in the
IDE. Still in this section it is possible to replay the sequence
of events in the same order they occurred, because the cursor
on the source code is displayed synchronously on the 3D
visualization. Thus, it is possible to revisit the debugging
session after it occurred.

The SDV is an open source tool and is available
on GitHub (https://github.com/eduardoafontana repositories
SwarmClientVS and SwarmServerAPI), and a video showing
the usage study can be found on YouTube (https://www.
youtube.com/watch?v=YkXaiD60OFU).

https://github.com/eduardoafontana
https://www.youtube.com/watch?v=YkXaiD60OFU
https://www.youtube.com/watch?v=YkXaiD60OFU


Fig. 2. SDV high level architecture

IV. CASE STUDIES

To evaluate our visualization tool, we performed two case
studies. The first case consisted of an issue at a software house.
Using SDV, the issue was investigated by a senior developer.
After that, a junior developer solved the issue. The second
case consisted of behavior insights from a research analysis
obtained from inspecting the sessions data collected in typical
issue-related tasks at the software house.

A. Case 1 - Capturing session data and inspecting a bug

a) Issue context: The experiment consisted of applying
the SDV to an issue in a software house and dividing the work
into two steps. On the first phase, a senior developer analyzed
the bug by capturing session data through SDV. On the second
phase, a junior developer got the session data from SDV and
tried to fix the issue. The software is a legacy system built on
.Net Framework 3.5 with web forms, which repeatedly brings
bugs. Because of that, the team considered the possibility of
this bug having been already fixed.

b) Usage: On the first phase, the senior developer re-
ceived the issue, prepared the conditions to run the system and
then started debugging using SDV. The developer had a recent
history with fixing bugs in this system. Hence, he suspected
which file to add the breakpoints to and debug. He was able
to replay the bug. He collected two sequences of debugging
sessions in SDV, as shown in Fig. 3.

Fig. 3. Visualization of debugging sessions

On the second phase, the junior developer received the same
issue and the session data collected by the senior developer.
The junior developer saw the debugging sessions on SDV, and

he inspected the source code by clicking on the first breakpoint
bullet on the debugging path. After that, he replayed the
session in SDV and highlighted the methods which contained
the breakpoints and events. Then, he added a breakpoint
to the project on the same lines that he had observed
on the visualization. After debugging once, he did not find
the cause of the bug, but could simulate it. After inspecting
the visualization one more time, he found a breakpoint in a
method that had not yet been observed. He put the breakpoint
in this method inside the project and started debugging. When
the method was hit, he stepped into a method that had not yet
been explored, not even by the senior developer. This method
was inside another class where he found the cause of the issue,
as shown in Fig. 7.

c) User’s feedback: We received the feedback from the
junior developer. He said that, based on the 3D visualization
and the correspondent interactive replay in the source code,
it was possible to infer where, in the file and the class, to
set the breakpoint to try to replay the issue. However, this
knowledge only provided the means to find the issue, not
exactly the place where the issue would be, because its cause
was in another class, deeper. He said that the senior developer
could have performed some more debugging sessions. The
junior developer said that the replay function helped him
understand the stack trace that was being performed by
the system when the Save button was pressed (the issue
happened when that button was pressed in the system).

B. Case 2 - Analyzing captured sessions and inducing insights

a) Context: In this case study, we present some behavior
insights that a researcher obtained while inspecting and ana-
lyzing data sessions collected from some debugging sessions
using SDV in maintenance of legacy systems at the software
house.

b) First Insight: By analyzing SDV sessions from both
the senior and the junior developers, the researcher realized
that the junior developer explored the source code in a fuzzy
debugging pattern [2] throwing more breakpoints on disperse
points than the senior developer. Furthermore, the junior
developer executed the same session stack trace repeatedly
without changes on the position of the breakpoints, as shown
in Fig. 4.

Furthermore, the researcher observed that the developers
forgot to remove the breakpoints when they finished the task.
Consequently, these forgotten breakpoints remained in future
tasks. Clearly, SDV helped highlight that behavior.

c) Second Insight: Other situation that could be ob-
served was in the initial process of searching the issue, i.e., in
the first debugging session, when the senior developer added
breakpoints to random places to get situated in the source
code, but he did not navigate by StepInto or StepOver, going
only through Continue, hopping between breakpoints. After
replaying the bug and locating the region in the code, the
senior developer executed debugging sessions by doing the
StepInto and StepOver steps, as shown on Fig. 5.



Fig. 4. Junior developer adding random breakpoints

Fig. 5. Senior developer adding more breakpoints and performing the steps

d) Third Insight: The other point observed by the re-
search team is that developers usually set a breakpoint after
loops and press Continue to escape from long loops during the
debugging sessions. Besides that, a similar behavior observed
is that developers set breakpoints inside the method and press
Continue or StepOver rather than pressing StepInto.

V. DISCUSSION

In this section we discuss some initial aspects observed in
case studies of SDV usage. SDV revealed some debugging
behaviors, limitations, assistance and impacts. These aspects
have implications on the work of developers, as shown.

We observe that replaying debugging sessions from SDV
could help the team identify software arrangement involved in
recurrences of bugs without the need for real debugging.

As a second point in the initial observation, we perceived
that the reuse of debugging data by developers in similar
problems could decrease development time and rework, as
observed in our previous work [2]. Besides, we perceived that
the debugging data collected from legacy systems by the senior
developer ensured a knowledge base of the system over time.
This knowledge could be reused by other developers, even as
a resource to introduce new developers to the team and to
understand the legacy system and software architecture.

As a limitation of the SDV, we observed that the use of
SDV could be spread to the team only if the SDV IDE
extension were compatible with Visual Studio Code. Similarly,

we perceived the limitation of the SDV IDE extension when
the developer was using more than one instance of Visual
Studio at the same time.

As impacts on the team we highlight two relevant issues
that were observed. The first one is that the filters and the
visualization are not intuitive, therefore a previous demonstra-
tion was necessary so that the developers could understand the
use of the tool. The second issue is that the visualization and
source code working simultaneously, with the synchronization
of events and the replay of debugging, helped the developer
get situated in the original source code. However, we observed
that the window where the source code was shown on SDV
could be better visualized if it were a new tab of the browser,
allowing it to be split onto two monitors.

VI. CONCLUSION

In this paper, we presented Sequence Debugging Session
View (SDV), a 3D visualization tool based on Swarm Debug-
ging and interactive diagram inspired on the UML sequence
diagram that shows a temporal sequence of events during
multiple debugging sessions, allowing replay of the debugging
session.

The main result we obtained is that the ability to recover
and share debugging data over time provided developers
with support to understand the system and find the bugs.
Furthermore, by analyzing the data collected from the case
study (B), we gained some insights into developer behaviors.
Moreover, we observed that replaying debugging sessions led
the junior developer to locate the bug. Also, we perceived that
SDV helped, over time, in how the legacy systems architecture
evolves, assisting on software comprehension. However, we
observed that our visualization demands a training session
prior to its usage, because the Swarm Debugging concept and
the metaphors are not intuitive, requiring a previous semiotic
explanation.

As future work, we plan to implement the debugging
extension for Visual Studio Code and other IDEs. On the 3D
visualization, we plan on developing improvements and new
features to make it more interactive and accurate, as well as
improving the precision of the collected data. Furthermore, we
plan to evaluate SDV by performing controlled experiments.

REFERENCES

[1] K. Araki, Z. Furukawa, and J. Cheng, “A general framework for debug-
ging,” Software, IEEE, vol. 8, no. 3, pp. 14–20, May 1991.

[2] F. Petrillo, Z. Soh, F. Khomh, M. Pimenta, C. Freitas, and Y. Guhneuc,
“Towards understanding interactive debugging,” in 2016 IEEE Interna-
tional Conference on Software Quality, Reliability and Security (QRS),
Aug 2016, pp. 152–163.

[3] J. Rumbaugh, I. Jacobson, and G. Booch, Unified Modeling Language
Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004.

[4] I. Zayour and A. Hamdar, “A qualitative study on debugging under an
enterprise IDE,” Information and Software Technology, vol. 70, pp. 130–
139, feb 2016.

[5] F. Petrillo, Y.-G. Guéhéneuc, M. Pimenta, C. Dal Sasso Freitas, and
F. Khomh, “Swarm Debugging: the Collective Intelligence on Interactive
Debugging,” arXiv e-prints, p. arXiv:1902.03520, Feb. 2019. [Online].
Available: https://arxiv.org/abs/1902.03520

https://arxiv.org/abs/1902.03520


Fig. 6. 3D visualization front-end

Fig. 7. The bug in the source code


	Introduction
	Background
	Debugging and Interactive Debugging
	Swarm Debugging

	The Tool
	The 3D visualization
	Architecture

	Case studies
	Case 1 - Capturing session data and inspecting a bug
	Case 2 - Analyzing captured sessions and inducing insights

	Discussion
	Conclusion
	References

