
A tertiary systematic literature review on Software
Visualization

Laure Bedu, Olivier Tinh, Fabio Petrillo
Université du Québec à Chicoutimi

Chicoutimi, Canada
laure.bedu1@uqac.ca,olivier.tinh1@uqac.ca,fabio@petrillo.com

Abstract—Software visualization (SV) allows us to visualize
different aspects and artifacts related to software, thus helping
engineers understanding its underlying design and functionalities
in a more efficient and faster way. In this paper, we conducted
a tertiary systematic literature review to identify, classify, and
evaluate the current state of the art on software visualization
from 48 software visualization secondary studies, following three
perspectives: publication trends, software visualization topics
and techniques, and issues related to research field. Hence,
we summarized the main findings among popular sub-fields of
SV, identifying potential research directions and fifteen shared
recommendations for developers, instructors and researchers.
Our main findings are the lack of rigorous evaluation or
theories support to assess SV tools effectiveness, the disconnection
between tool design and their scope, and the dispersal of the
research community.

Index Terms—Software Visualization, Tertiary, Literature Re-
view, SLR, Visualization techniques, Information Visualization,
Recommendations, State of the art, Software Engineering

I. INTRODUCTION

Software visualization (SV) is an Information Visualization
domain related to software systems to understand visual rep-
resentation of software architecture, behavior and evolution
[49]. Besides algorithms and programs, artifacts related to
software and its development problems are also visualized.
Examples of such artifacts include requirements, bug reports,
design documentation and so on. With such a broad definition,
SV is associated with a wide range of software engineering
domains.

Even though the SV has been studied from decades, many
aspects are still uncertain or unexplored. It makes complex
for researchers and practitioners to have a clear landscape of
SV. The main goal of this paper is to identify the state of the
art for understanding what we know about scientific research
on SV. Researchers could gain from gathering and analyzing
those different aspects of SV and consider them as a whole.

For achieving this goal, we applied the tertiary systematic
literature review (SLR) methodology to provide a study that
analyzes all secondary research contributions in the SV area.
A tertiary literature review is a systematic process to extract
and compile knowledge from secondary studies. A secondary
study is a research work extract and compiles knowledge
from primary studies. Primary studies are original materials
on which results come from (controlled) experiments, surveys
with practitioners, interviewers, mining repositories, static or
dynamic analysis, and so ones.

In our study, we identified and evaluated the current state
of the art on SV from different perspectives. We selected 48
secondary studies from over two hundred potentially relevant
papers. Next, we rigorously analyzed the studies to extract our
results. Finally, we summarized the results to produce a clear
overview of the state of the art. Also, we identified potential
research directions. We aimed at combining those different
aspects to develop findings among it.

We consider secondary papers as papers based on primary
sources (experiments and empirical studies) about a domain.
Tertiary papers synthesize or summarize research that appears
in secondary papers. Thus, our approach is to go beyond the
concept of reviewing primary studies, reviewing secondary
papers that already took a step back in SV concepts to
produce reliable results. The study design is specified to allow
replicability of this work. The purpose is to suggest even more
reliable results, related to SV as a whole, identifying gaps in
the field, for researchers to base on for future works. Important
sub-field in which SV is applied are taken into consideration.

The main contributions of this study are: (i) a collection of
48 secondary studies on SV; (ii) an up-to-date map of state-
of-the-art in SV and its implications for future research; (iii) a
set of recommendations acting as sound guidelines for future
development in SV field.

II. BACKGROUND

SV is a sub-field of information visualization, which is the
use of computer-supported interactive visual representations of
abstract data to amplify cognition [50]. SV includes algorithm
and program visualization (AV, PV), among others. The first
one allows the visualization of general algorithms at a high
level of abstraction while the latter focuses on the visualization
of programs, usually at a lower level of abstraction [4].

There are numerous ways of representing information about
software based on the purpose of the visualization. However,
some techniques remained predominant such as graph-based
representations as well as hierarchical ones. Besides, artifacts
and architecture are mostly represented in SV systems, data
sources coming mainly from Version Control Systems (VCS)
and source codes [30], [34].

Beyond classical representation techniques, metaphors are
also applied, which allow abstract concept representations
through known entities. Those entities can consist of geo-



metrical shapes or real-life objects such as cities, adopting
practitioners well-known metaphors.

Visual design is a recurrent dilemma in SV tools conception.
Choosing what kind of interaction could handle this to improve
practitioners comprehension is a daunting challenge. Several
papers refer to Schneiderman’s mantra “Overview first, zoom
and filter, then show details on demand” as a visualization
strategy that should be supported [52].

III. STUDY DESIGN

Software Visualization is a vast field, so we follow recog-
nized guidelines [51] to organize our SLR. Indeed, SLR have
been proven efficient to make a software engineering state-of-
the-art by using a systematic and reproducible process [55].
We explain our study design in the following sections.

A. Research Questions

Through this work, we answer those following three re-
search questions:
RQ1 What are the current publication characteristics in the
software visualization research field? Number of publications
over the year, contribution types, main topics of selected pa-
pers are features that are characterized to answer this question.
RQ2 - What are the application domain of software visual-
ization?
RQ2.1 - For what purpose is software visualization used by
developers, testers, project managers and even customers?
This question aims at identifying the reasons why software is
visualized, what are the concerned fields on SV, and the soft-
ware engineering related problems it can help resolve. In the
corresponding section, we also mention the involved audience.
RQ2.2 What/how is visualized using software visualization
techniques? This second part aims at defining the visualized
metrics and the reasons why they are chosen among other
choices. How they are visualized is related to commonly used
techniques and metaphors among the previously identified
purposes. Discussion regarding this question try to provide
further research guidance, based on recurrent issues pointed
out in our paper set.
RQ3 What are the main issues regarding software visualiza-
tion application? Answering this question aims at identifying
difficulties in terms of SV, limiting their use in specific
domains, and tracks on how to overcome them in further
researches.

B. Search and Selection of Secondary Studies

As a tertiary SLR, the search and selection process of the
secondary studies are designed in seven steps, to control the
number and attributes of selected studies. Figure 1 summarize
those seven steps.
Raw search. First of all, we performed database searches,
as recommended in SLR guideline papers [51], [53], on four
indexing systems and scientific database related to software
engineering: ACM Digital Library, IEEE Xplore, Scopus and
Web of Science. We justify the use of these databases by
their ability to export results in spreadsheet format, besides
being considered as standard libraries [54]. The search strings

Fig. 1. Features on the search and selection process

we used are shown in Listing 1-4. Each one is divided
into two parts, (i) one contains the most generic keyword
that describes our subject (SV), (ii) the others is related to
secondary study terms to exclude primary studies that are
irrelevant to our tertiary approach. We wanted to control the
number and relevance of the results. Therefore, the strings
are limited to title, abstract and keywords.

Listing 1 - ACM DL
recordAbstract:(+"Software
visualization" "systematic review",
"literature review","systematic mapping"
,"mapping study", "systematic map",
"meta-analysis","survey",
"literature analysis")

Listing 2 - IEEE Xplore
("Software visualization" AND
("systematic review" OR
"literature review" OR
"systematic mapping" OR "mapping study"
OR "systematic map" OR "meta-analysis"
OR "literature analysis" OR "survey"))

Listing 3 - Scopus
TITLE-ABS-KEY ("Software visualization")
AND TITLE-ABS-KEY ("systematic review"
OR "literature review"
OR "systematic mapping"
OR "mapping study"
OR "systematic map" OR "meta-analysis"
OR "survey" OR "literature analysis")
AND (LIMIT-TO(SUBJAREA, "COMP"))

Listing 4 - Web of Science
ALL = ("Software visualization" AND
("systematic review" OR
"literature review" OR
"systematic mapping" OR
"mapping study" OR "systematic map"
OR "meta-analysis" OR "survey"
OR "literature analysis"))



Pre-selection. We only considered journal and conference
articles. For each result we obtained with the previous step, we
studied titles and abstracts to find out whether they were re-
lated to SV. Irrelevant papers were thus excluded, establishing
the first selection process, aiming at a coherent set of research
studies.
Merging. In this phase, we combined the four database search
results into a single data set. We matched raw data by title,
authors and year before removing duplicated entries.
Selection. The selection consists of the application of a
selection criteria. This step aims at making our procedure
rigorous and reproducible, as advised in Kuhrmann et al. paper
[54]. The data set is filtered according to the following criteria:
I1 to I3 are inclusion criteria while E1 to E5 are exclusion
ones.

I1 - Title, keyword list, and abstract explicitly stating that
the paper is related to SV.

I2 - Studies conducting a systematic mapping study or SLR
on SV or any sub-field.

I3 - Studies providing a state of the art, taxonomy, review
on SV, or any sub-field.

E1 - Conference proceedings, e-books, slideshows, or for-
mats different from research papers.

E2 - Papers focusing on a unique tool, technique, not broad
enough.

E3 - The paper’s full text is not available for download.
E4 - The paper is not in English.
E5 - The publication year is lower than 2000.

We accepted also SV co-relate terms and sub-fields as
software evolution visualization, program visualization, or SV
tools and techniques. We chose to include papers from 2000
to 2018 because they provide an overview of the evolution
of the field throughout the years. The application of those
criteria allows a time-effective and objective selection of the
studies used in our literature review. Despite the criterion E5,
we decided include Price et al. paper [3] because it is a
major reference in SV, and it offers an interesting overview
of the past state of the art of SV. Two authors applied the
inclusion/exclusion criteria carefully, filtering papers that do
not follow the criteria.
Snowballing. We conducted snowballing process in both di-
rection (backward and forward) [51]. The main goal of this
stage is to expand the set of possibly relevant papers by
focusing on papers either citing or being cited by each previous
selected studies. Backward snowballing proved to be iterative,
as we first conduct this process right after the selection process
on one depth level (we did not investigate the additional papers
references), before adding relevant cited papers during the data
extraction, thus increasing the depth level.
Further exclusions. Further exclusions concern papers that do
not follow the inclusion/exclusion criteria while two-authors-
reading the whole text during the data extraction process,
because sometimes the previous reading of abstract and title
did not reveal that the paper was out of the scope of our study.

C. Data Extraction

In this step, we gathered data from secondary papers
through a well-defined process. Extracted data is organized
according to the research question it answers.
RQ1. Publication trends: For each study we have recorded
the publication year, the research strategy, and the main topics
addressed. The definition of topics follows this process: for
each paper, two authors read the title, abstract and more if
necessary, and then define keywords that best describe the
application domain. In case of a disagreement, a discussion
occurs in to resolve conflicts.

RQ2.1 Software visualization goals: We had to define
categories to represent the main sub-field that are represented
in the studies set. They mainly come from previous main
topics, if the number of papers related to a specific topic was
not high enough, we did not consider them as categories,
because the aim here is to combine results from papers
dealing with the same subject. It does not claim to be
exhaustive, although it suits well to the selected paper
scope. Answering this question is fastidious, as SV tools
and techniques are not necessary designed for a specific
goal. Even well-known taxonomies as those presented by
Roman et al. [59], and Price et al. [3], did not focus
on this aspect of SV. Nevertheless, for each category we
identified, we discuss main recurrent ideas that emerge from
the selected studies SV goals and audience . We extracted
other additional relevant information to develop the discussion.

RQ2.2 Metrics, techniques, metaphors: We employed
the previous framework to discuss common techniques and
metaphors employed in each previously defined domains.
We also discuss emergent and innovative techniques, such
as those exploiting 3D animation or virtual reality, as two
systematic studies have been published on these subjects [17],
[27].

RQ3. Software visualization application issues. Through
full-text reading of our set of selected studies, we noted
down issues related by authors. We took into account each
issue emerging in at least two studies, and discuss it in the
corresponding Section IV-C.

Finally, all selected papers are provided in Table I.

D. Data Synthesis

This activity mainly resulted in a synthesis of ideas encoun-
tered through metrics, techniques and task classification. It
induces the building of our understanding of the results found.

E. Replicability of the Study

Through a meticulous description of the methodology em-
ployed in this work, researchers can replicate our process and
widen the current limited number of studies reviewed (see
Section VII). Section IV-B presents the framework used to
classify results in thematic.



TABLE I: List of selected secondary studies

Article Topic Year Type
[3] A principled taxonomy of software visualization General 1993 Taxonomy
[35] Software visualization tools: Survey and analysis General 2001 Survey
[13] A Task Oriented View of Software Visualization General 2002 Classification

[20] Documenting Software Systems with Views III: Towards a Task-oriented Classification of
Program Visualization Techniques General 2002 Classification

[32] Software visualization General 2005 Literature review

[26] On the use of visualization to support awareness of human activities in software development:
a survey and a framework General 2005 Taxonomy

[37] The paradox of software visualization General 2005 Opinion paper
[48] Visualization Techniques for Program Comprehension A Literature Review General 2006 Literature review
[29] Requirements of software visualization tools: A literature survey General 2007 Literature review
[17] An Overview of 3D Software Visualization General 2009 Literature review
[25] Mental imagery and software visualization in high-performance software development teams General 2009 Survey
[46] Visualization of the Static Aspects of Software: A Survey General 2011 Literature review

[16] An Information Visualization Feature Model for Supporting the Selection of Software
Visualizations General 2014 Literature review

[27] Past, present, and future of 3D software visualization: A systematic literature analysis General 2015 SLR2

[39] To enlighten hidden facts in the code: A review of software visualization metaphors General 2015 SLR
[34] Software Visualization Today: Systematic Literature Review General 2016 SLR
[40] Towards Actionable Visualisation in Software Development General 2016 SMS1

[43] Visual augmentation of source code editors: A systematic mapping study General 2018 Taxonomy
[22] Exploring the Role of Visualization and Engagement in Computer Science Education Education 2002 Taxonomy
[4] A Review of Generic Program Visualization Systems for Introductory Programming Education Education 2013 Literature review

[18] Are Visualization Tools Used in Programming Education?: By Whom, How, Why, and Why
Not? Education 2014 Survey

[24] Learning principles in program visualizations: A systematic literature review Education 2016 SLR

[36] Survey of software visualization systems to teach message-passing concurrency in secondary
school Education 2017 Literature review

[38] Theoretical underpinnings of learner engagement in software visualization system: A system-
atic literature review protocol Education 2018 SLR

[9] A systematic literature review of student engagement in software visualization: a theoretical
perspective Education 2019 SLR

[14] A Taxonomy of Computer Architecture Visualizations Architecture 2002 Taxonomy
[1] A Framework for Software Architecture Visualisation Assessment Architecture 2005 Classification
[7] A Survey Paper on Software Architecture Visualization Architecture 2008 Literature review
[44] Visualization and Evolution of Software Architectures Architecture 2012 Literature review
[11] A systematic review of software architecture visualization techniques Architecture 2014 SLR

[5] A Survey of Successful Evaluations of Program Visualization and Algorithm Animation
Systems Evaluation 2009 Literature review

[21] Evaluation of Software Visualization Tools Evaluation 2009 Literature review
[41] Validation of Software Visualization Tools: A Systematic Mapping Study Evaluation 2014 SMS

[42] Validation of the City Metaphor in Software Visualization Evaluation 2015 Survey + Experi-
mental

[8] A systematic literature review of software visualization evaluation Evaluation 2018 SLR

[33] Software visualization in software maintenance, reverse engineering, and re-engineering: a
research survey Maintenance 2003 Survey

[19] Classifying Desirable Features of Software Visualization Tools for Corrective Maintenance Maintenance 2008 Literature review
[6] A survey on goal-oriented visualization of clone data Maintenance 2015 Literature review
[28] Program comprehension through reverse-engineered sequence diagrams: A systematic review Maintenance 2018 SLR

[47] Visualization Techniques for Application in Interactive Product Configuration Product
Line 2011 Literature review

[45] Visualization for Software Product Lines: A Systematic Mapping Study Product
Line 2016 SMS

[10] A systematic mapping study of information visualization for software product line engineering Product line 2017 SMS
[2] A meta-study of algorithm visualization effectiveness Algorithm 2002 SMS
[15] Algorithm Visualization: The State of the Field Algorithm 2010 Literature review
[31] Software evolution visualization: A systematic mapping study Evolution 2013 SMS
[30] Software evolution visualization techniques and methods - a systematic review Evolution 2016 SLR

[12] A Systematic Survey of Program Comprehension through Dynamic Analysis Dynamic
Analysis 2009 SLR

[23] Information Visualization for Agile Software Development Teams Process 2014 SMS

1SMS = Systematic Mapping Study, 2SLR = Systematic Literature Review



IV. RESULTS

The following results concern the final selection of 48
papers. Each sub-section provides an answer to a specific
research question. We used the classification framework for
questions 2 and 3. Further, the framework acts as a guide
through the vastness of SV related field. Table I presents
selected papers.

A. Publication Trends

First of all, the set of selected studies distribution is il-
lustrated among publication years, research methodology and
main topics covered.

1) Publication Years: Figure 2 presents the distribution of
secondary paper publications on SV over the years. Despite

0

1

5

1

0

3

1 1 1

6

2 2

1

3

6

4

5

1

4

0

1

2

3

4

5

6

7

nu
m

be
r 

of
 p

ub
lic

at
io

n

2000 2002 2004 2006 2008 2010 2012 2014 2016 2018

years

Fig. 2. Publication of SV selected reviews over the years (2000-2018).

the relatively small size of papers set and their nature, we can
note that the scientific interest on SV in the last years has
remained constant and steady. We found secondary studies
from 2001 to 2018, and only 2004 had a discontinuity (peaks
of 6 articles in 2009 and 2014). Thus, we observed a regular
production of secondary in SV domain.

2) Type of Publication: Figure 3 presents selected studies
classified by their research types (or strategy). The term
“Taxonomy” includes extension of taxonomies [13], [22].
We separated taxonomies and classifications because of their
definition difference. The fundamental difference is that tax-
onomies describe relationships between items while classi-
fications group the items. Systematic literature review and
systematic mapping study represent an essential part of our
set. As explained previously, reliable results obtained in those
studies are necessary to build our tertiary systematic review.

3) Publication Main Topics: Figure 4 presents the topics
that appear in the selected paper set. Some subjects remain
popular in the research area, as it is the case for Education,
Architecture or Evaluation of developed tools. Publication
topics spread across different areas related to software engi-
neering, and assess the breadth of SV. However, 37.5% of
articles (18/48) are “General” SV topic, so they do not focus
on a specific SV topic.

16

11

7

5
4

3

1 1

0

2

4

6

8

10

12

14

16

18

nu
m

be
r 

of
 p

ub
lic

at
io

n

Literature review SLR SMS Taxonomy Survey Classification Experimental Opinion paper

types

Fig. 3. Types of selected reviews publication.

18

7

5 5
4

3
2 2

1 1

0

2

4

6

8

10

12

14

16

18

20

nu
m

be
r 

of
 p

ub
lic

at
io

n

General Education Architecture Evaluation Maintenance Product Line Algorithm Evolution Dynamic Analysis Process

topics

Fig. 4. Topics of selected reviews.

B. Purpose of Software Visualization and Corresponding
Techniques Used

To define addressed subjects in this section, we chose in
Figure 4 the best-represented subjects, that is Education, Ar-
chitecture, Maintenance, Product Line and Evolution. Papers
from “General” and “Evaluation” categories do not represent
a software engineering application field, that is why they are
not retained in this section. However, we exploit them in
Section IV-C, dealing with issues regarding SV research field.

As expected, SV covers broad domains and involve different
aspects of software engineering, from requirement engineering
to programming activity. In their paper, Mattila et al. [34]
found that the main goals of SV systems are software struc-
ture, behaviour and evolution understanding that uphold the
broadness identified in our framework. The most represented
field in our set is programming education [2], [4], [5], [9],
[15], [18], [22], [24], [36], [38]. We noticed that some papers
did not fit in defined categories, as they do not always focus on
an application field. It is the case for reviewing tool papers,
evaluation methods [21], [29], [35], opinion papers [37] or
papers dealing with SV as a whole [33], [34]. Besides, we
extracted data from those offering shared ideas on particular
discussed aspects. Some data set fields were not represented in
the framework if we did not find enough shared ideas allowing
the presentation of an interesting state of the art. It especially
is the case for team management, in which SV can help to
communicate and to share knowledge. In what follows, we



develop each category, focusing on corresponding SV system
goals, commonly used techniques and audience.

1) Software Architecture Visualization: The first aspect that
fits in software development activities we choose to focus
on is software architecture visualization (SAV). In fact, this
equally concerns the development, evolution and maintenance
of software, but SV papers usually deal with software archi-
tecture (SA) as a whole. Indeed, architecture is a vital step
towards building and maintaining software systems. It attracts
developers, testers, project managers and even customers [2],
[7], [11]. The goal is to find a meaningful and useful map-
ping scheme between the SA elements and visual metaphors.
Architects need to realize the different characteristics of the
architecture they design as complexity, coupling, cohesion and
other attributes [7]. Visualization techniques applied in SAV
are graph-based, notation-based as well as metaphors [7], [11].
They involve a multiplicity of views, data source visualization,
classic navigation (following Schneiderman’s mantra, see II).

2) Programming Education: This domain gathers a vari-
ous audience, comprised of instructors, students as well as
researchers. In programming education, the aim is to improve
the learning of visualized concepts. Algorithm visualization
(AV) and program visualization (PV) are used to fulfill this
goal. PV helps students understand the run-time behaviour of
other programs, acting as an educational tool to complement
lectures, while AV brings algorithms to life by graphically
representing their various states and animating the transitions
between those states [2], [15]. One of the principal findings
among programming education is that higher engagement level
leads to higher educational benefits [22]. Nap et al. [22] found
that students use AV technology has a greater impact on
effectiveness than what AV technology shows them, it has to
enable students to construct their understanding through active
learning [2].

Despite effectiveness assessment issues that are furthered
explored in discussion Section V, programming education is
met with encouraging results. Urquiza-Fuentes et al. [5] veri-
fied that learning could be enhanced with PA visualizations in
several ways. Improvements concerns knowledge acquisition
at any engagement level, attitude towards materials or subject
matters, and programming skills [5]. Regarding techniques,
controlled viewing is thus suggested, and is, in fact, the most
common form of direct engagement in these SV systems.
Abstract two-dimensional graphics are also prevailing. [4].

3) Software Visualization and Maintenance: SV techniques
are widely used in software maintenance and related domains,
like reverse engineering, re-engineering, fault detection, and
refactoring [13]. Examples of tasks SV could help to perform
are debugging, database migration, cost estimation, change
impact analysis, and design recovery [32].

Software comprehension is crucial to perform maintenance
tasks, as large amounts of complex data need to be understood,
and interactions between software engineers and automatic
analyses are required [32], [35]. Empirical studies have shown
that maintenance programmers spend 50% of their time to

understand the software to be changed [60], enhancing the
need for visualization to ease the comprehension process.

The interesting point is that the vast majority of researchers
(80%) believes SV to be necessary for software maintenance
[32], even if challenges still need to be faced, as we see in
Section V. They employ numerous techniques in this domain,
the most famous being graph-based, textual and automatic
generated UML [32]. An important design step is to choose
the right interactions. Indeed, due to the limited perception of
humans and the amount of information that is to be visualized
in such systems, it is important to be able to select and display
just the data of interest. Filters, multiples views, synchroniza-
tion and navigation between them are examples of interactions
to accomplish these goals [29]. In this domain, they utilize
3D visualizations to increase information density and integrate
those multiple views (e.g. structure and behaviour views),
facilitating the maintenance perception [17].

4) Software Evolution Visualization: Software evolution
(SE) is an important topic in software engineering that gener-
ally deals with large amounts of data, as it involves looking at
whole project histories. One of the main aspects of this domain
is the building of theories and models that allow understanding
the past and present, as well as predicting future properties
related to software maintenance activities, and hence support
software maintenance tasks [31]. Consequently, we already
discussed key aspects in previous Sections IV-B1 and IV-B3,
due to existing interlinks in the categories we defined.

Regarding visualized artifacts, as SE generally deals with
large amounts of data, it originates from heterogeneous sources
such as Source Code Management (SCM) repositories, source
code, Issue Tracking Systems (ITS), mailing and project
discussion lists [30], [33], [34]. The main goal is to see how
source code files changes over time.

Graph and matrix based, hierarchical and geometric pro-
jections are the most used techniques, with frequent use of
colors, and common interactions as selection, navigation and
zoom [30], [31]. Perspectives of visualization developed are
structural (showing packages, classes, methods), dependency
(showing relationships among software modules) as well as
inheritance perspectives (e.g. Lanza’s Polymetric view [57]).

Timelines or animations are used less than graph visual-
ization, which is surprising as studying evolution in software
indeed relates to time dimension [34].

5) Software Product Line Engineering: As stated by Pleuss
et al. [47]

“In product line engineering (PLE) a major chal-
lenge is to handle a complexity of artifacts. Visual
and interactive techniques aim to reduce the cog-
nitive complexity and support the developer during
challenging PLE tasks like product configuration.”

Visualization tools provide support in domain engineering
(DE) activities of requirements engineering (DRE) and design
(DD), as well as corresponding application engineering (AE)
activities, that is when definition of feature models occurs,
and requirements for each product are captured (ARE) and
analyzed (AD) [10].



These techniques mostly aim at visualizing a unique artifact,
that is feature models. They consist of trees, graphs and bar di-
agrams, using colours to distinguish the different features [45].
Those are basic visualizations, which rarely offer navigation
between artifacts, and corresponding tools seem to be ad hoc
techniques from frameworks as Eclipse. We see in Section V
impacts of such utilization.

C. Issues Regarding Software Visualization Application

In this section, we do not focus on particular sub-fields of
SV, and consider recurrent limitations evoked in papers that
did not fit previous framework categories. We detail recom-
mendation corresponding to each issue in the discussion VI.

1) Research Prototypes Scale: Price et al. [3] raised an
issue a long time ago, concerning the problem of scalability
of 1993 currently developed SV tools. Designated as “toy
programs”, they do not fit industrial scope in terms of the range
of program inputs. The advice at this time was to focus on a
production scale system to possibly use SV in the industry.

However, this issue is still encountered in program visual-
ization software for programming education, where tools tend
to be short-lived research prototypes [4]. Software mainte-
nance researchers confirm that scalability and dealing with
space and time complexity of techniques are major chal-
lenges for SV for software maintenance [32]. In that respect,
they expect SV tools to only be appropriate for small to
medium size systems.

2) Tools Effectiveness Validation: One of the mainly dis-
cussed issues regarding SV tools in the research field is the
lack of rigorous validation techniques. The issue recurs in
numerous papers [3], [4], [34], [41]. In the discussion, we
observe that each sub-field experience this issue and it has
its guidelines to overcome it. The concerning fact is that
Price et al. [3], in their 1993 taxonomy, already outlined
the insufficiency in the empirical evaluation of prototypes
effectiveness. In a more recent work, presenting a systematic
review of SV as a whole, Mattila et al. [34] indicated the
primary papers they reviewed to not be rigorous enough in
the way they evaluate their work. Indeed, surveys or controlled
experiments are not popular comparing to case studies, though
they are described as being a proper validation process [41].
Beyond the idea of effectiveness, primary papers consistently
forget to state research methods and questions [34]. This
deficiency rigor is not justified, regarding SV field maturity.

3) Scope-related Vision: Reverse engineering, re-
engineering and software maintenance professionals think that
SV researches are too much metaphor related and could gain
from focusing on the scope of the tool being developed [32].
Indeed, it is even truer in 3D visualization, where the aim of
SV is not to create impressive images, but images that evoke
viewer mental images for better software comprehension
[17]. In the meantime, Petre [25] studied mental imagery and
SV in high-performance software development team . The
author suggested that the SV system should embody more
knowledge of the application domain, to visualize software
in context. Another problem of focusing too much on the

techniques is the lack of usability. We should consider human
factors in the design and evaluation of SV tools [13], [17].

V. DISCUSSION

A. Application Domains of Software Visualization

In this section, we mention the main research issues, then
present the means to address them. Most suggestions come
from our paper set and for this reason, we recommend
reading the corresponding quoted papers as they contain far
more details and contextualized content. We often introduce
future research gaps and recommendation for researchers to
find guidance through this work.

1) Software Architecture Visualization: The challenge SV
tools have to face in software architecture visualization (SAV)
is the problem of scalability, since this is a field involving large
amounts of data, and todays software systems are increasingly
large and complex. Many solutions appear to meet this chal-
lenge. They consist in consideration of following issues in
future researches.

First of all, Plesus et al. [48] discussed that SV tools do not
provide good viewpoints, abstraction levels and filters needed
to understand complex software architectures. One remedy
could be to rely on visualization techniques which are able
to amplify the human cognition process. The trend in recent
papers is to use real metaphors (e.g. city metaphor) instead of
abstract ones, to represent software artifacts [7].

Besides, being able to prove the effectiveness of SV systems
developed is another way to face the complexity problem.
Indeed, the evaluation of SAV still lacks rigor, as this is
the case for many SV tools [7], [11]. It is essential to find
criteria to determine what makes an effective architecture
visualization, as well as paying attention to use more objective
evaluation methods (e.g., controlled experiments) for provid-
ing convincing evidence to support its effectiveness [7], [11].

Another advice is to consider automation, as already men-
tioned by Price et al. in 1993 [3]. Shanin et al. [11] claim
that automated and semi-automated tools permit to gather and
provide higher levels of evidence for architecture visualization
techniques, which also lower efforts produced by practitioners.

Regarding research gaps, there are few applied visualization
techniques in architectural analysis, synthesis, implementation
and reuse activities. Parallel coordinates and bundled diagram
layouts are interesting techniques rarely explored in developed
systems [44]. In popular activities like maintenance and com-
prehension, part of the growing area of research investigates
the application of 3D graphics, with positive results [17].

We emphasize the conduct of industrial surveys as this
could allow the understanding of how SA practitioners employ
visualization techniques in the architecture process, and what
issues prevent them from being adopted in SA [11].

2) On the Use of Algorithm Visualization in Education:
Although results in this field are positive, as we found in
Section IV-B2, most selected papers agree there is still a
lack of careful evaluation on programming education SV.
Indeed, Sorva et al. and Urquiza-Feuentes et al. [4], [5] speak



about informal evaluations with little contributions to future
improvements of evaluated systems.

The use of theoretical foundations such as the social con-
structivism theory evoked in Shahin et al. [11] is a running
notion. Constructivism states that students actively construct
knowledge rather than passively receiving and storing already
made knowledge. Most of the effective AVs were built and
guided by such cognitive theories, and considering other learn-
ing theories from different domains could result in important
contributions in terms of effectiveness [9]. We also suggest for
PV to use concrete visual allegories and gamification [24].

Furthermore, the nature of some developed tools is a wor-
rying matter in this field: they are often short-lived research
prototypes, suffering a low adoption rate [4], [9]. Back in 2002,
Hundhausen et al. [2] stated that ”visualization technology
has failed to catch on in the mainstream computer science
education”. In 2014, Isohanni et al. [18] qualified SV tools
use in class as seldom, besides often appearing to deal with
only basic programming, data structures and algorithms.

Besides, contrary to recommendation usages, they are com-
monly used by teachers and not students, for demonstrations
during classroom lectures or other strategies involving learners
in passive interactions [18], [22]. Finally, the community
development around AVs is an interesting idea that appears
in our set, gathering various stakeholders such as developers,
educators, researchers, and end-users. A collaborative effort
would allow small-scale AVs developers to benefit from access
to existing AV implementations, rating system for existing
AVs, comments and feedback [15].

We conclude on programming education by pointing out
the fact that there is a growing area of research investigating
the application of 3D graphics and algorithm animation for
educational purposes [17].

3) Software Maintenance Visualization: The concerns of
current SV tools for maintenance is that they do not overcome
the domain specific issues of scalability and complexity, and
are only appropriate for small to medium size systems [32].
Creating high abstraction levels and different level of details in
tools developed could be a solution, as maintenance program-
mers work at every level of abstraction [29]. 3D visualizations
are developed to present different abstraction levels using
source code, object-oriented systems or software architectures
[17] .

The nature of researches is another critical concern in
software maintenance visualization, which is disconnected
from domain problems. While designing SV tools, features
have to be scope related rather than visualization related [32].
A thorough analysis of dedicated applications is necessary to
correspond to real life usages.

Clone visualizations can be considered as a sub-field helping
refactoring activities. However, none of the existing visualiza-
tions use an inheritance structure or a run-time interaction of
program units which are essential for assessing refactoring
opportunities [6].

Finally, we recommend to enhance community interactions.
Indeed, SV could gain from collaboration with graph drawers,

for example, to benefit from their expertise, planarization
techniques to reduce graph visualization complexity while
dealing with large systems [32]. Tools should be available
for the research community, enhancing their customization
and composition. Doing this would support standard exchange
formats and benefits to all involved stakeholders.

Moreover, for those willing to develop SV tools focusing on
maintenance tasks, we recommend the reading of the work of
Kienle and Muller [29] who identified requirements (quality
attributes and functional requirements) for SV tools.

4) Software Evolution: Bani-Salameh et al. [30] point out
the decreasing number of published studies in SE visualiza-
tions. Is the area failing to reach its goals? The fact that SE
visualization approaches do not always focus on achieving
practical SE goals, besides presenting partially validated sys-
tems could explain such disinterest. Those are close issues to
what software maintenance field face, as they are interlinked.
Indeed, we noticed a lack of cooperative and comparative work
as it was the case in the previous Section V-A3.

About research gaps, it would be interesting to investigate
if SE could be visualized in ways that emphasizing the time
dimension and even use similar visualization methods than in
software execution visualization [34].

5) Software Product Line Engineering: Most approaches do
not tap on the wealth of tooling and visualization techniques
currently available. Instead, they use either ad-hoc tools and
techniques (e.g. basic graphics APIs provided by the Java
SDK.49) or are based on development frameworks like Eclipse
Modeling Framework [10], [45]. Indeed, researchers did not
employ more advanced visualization techniques or tools, just
stand-alone tools that are not integrated. Pleuss et al. [47]
stated that ”the full potential of visualization in the context of
PLE has not been exploited so far”.

Even in the use of colours to distinguish the artifacts
that belong to each feature, a scalability problem appears as
thousands of features are to be represented. More experiments
with larger scopes are needed, as well as the integration
of tools developed in popular IDEs, and the usage of more
advanced visualization techniques and tools [10]. We can thus
see that handling scalability and multivariate data visualization
are two open challenges with a high impact potential in the
PLE community.

Numerous works used industrial or academic examples,
which is a good indication of the importance of visualization
techniques in industrial settings and attention research com-
munity is putting on the domain.

In this section, we recommend to enhance community inter-
actions. Indeed, SV could gain from collaboration with graph
drawers, for example, to benefit from their expertise, planariza-
tion techniques to reduce graph visualization complexity while
dealing with large systems [32]. Tools should be available
for the research community, enhancing their customization
and composition. Doing this would support standard exchange
formats and benefits to all involved stakeholders.



VI. RECOMMENDATIONS

We provide advice gathered from the different analyzed
search papers. Among all recommendations identified in our
paper set, we choose to regroup those appearing in general
recommendations. They are presented in Table II, allowing to
highlight recommendations that appear the most. The merging
of such reliable results produces sound guidelines for future
research or development in the SV field.

A. General

We can see in Table II (R4), that community development
in SV is recommended by 21% of our paper set. Indeed, the
gathering of different stakeholders as developers, researchers
or educators would enhance access to previous SV implemen-
tations, feedback and rating systems.

Our recommendations for this community gathering to
happen are the following:

• For SV projects, creating a website that presents contrib-
utors, developed tool and provide a downloading link (in
the case of open source project) would permit various
stakeholders to interact with it.

• Any of these webpages could be submitted to websites
or blogs referencing them, an example is Craig Anslow’s
blog (https://softvis.wordpress.com/about/), which is cur-
rently active. Gathering projects is more convenient for
the different stakeholders to find them, avoiding the
browsing of numerous webpages.

B. Developers

While designing a SV, the two main recommendations,
according to Table II, are to identify real software engineering
tasks the tool will support (R3) and provide details on demand
as an interaction (R2), especially while working on complex
systems, to avoid cognitive overload. It depends on which
subfield we are working on, but those recommendations are
shared by respectively 21 and 23% of our set, placing them
at the level of sound guidelines.

C. Instructors

Teachers mostly use AV and PV tools as a means of teaching
in the education field as discussed in Section V-A2.

Here, we recommend as 14.5% of the selected articles, to
promote active learning for students (R5).

D. Researchers

There is a crucial need to conduct empirical studies to
existing visualization (R1, shared by 40% of our set), or at
least to think about such validation in the design of future
visualization systems.

We recommend reading previous work that only focus on
this aspect, the first being Sensalire et al. [21]. It provides
guidelines for tool and task selection, choosing and training
of participants, and analyzing the results from the evaluation
conducted. Merino et al. provide guidelines to increase the ev-
idence of the effectiveness of SV approaches, thus improving

their adoption rate [8]. Regarding PV and AV tools, Urquiza-
Fuentes et al. [5] recommend narrative and textual contents,
feedback to students answers, and a student-centered approach
in the design of PAV construction kits .

VII. THREATS TO VALIDITY

SLR process can hardly be fully comprehensive, as some
papers can slip through the internet. Data extraction is often
biased because impartiality is hard to meet, especially without
previous experiences in the domain. We try to follow as strictly
as possible all good practices from guidelines readings and
try to be as objective as possible. Thus, we describe the main
threats to validity to our study and how we mitigated them.

A. Construct Validity.

We mitigated this threat by searching the studies on different
data sources. However, research studies that did not contain
the term ”software visualization” were not added in our study.
However, we also argue that our string requests provide
relevant papers that could efficiently answer in our research
questions. We added a selection layer by using inclusion and
exclusion criteria.

B. Internal Validity.

We mitigated this threat by both reading and sharing our in-
terpretation of each read papers, thus mitigating the possibility
of misinterpreting them. We also extracted and aggregated the
main ideas and recommendation in Section V and Section VI
which minimize the impact of a misinterpreted paper.

C. External Validity.

The main external threat to our study is that we excluded
selected papers published before 2000 except for Price et al.
[3]. We argue that the missing papers do not significantly
impact our review, as the present ones already share similar
ideas and recommendations, in addition to be more topical.

D. Conclusion Validity.

Reproducibility of our study could be obstructed due to a
bias in the data collection. By establishing a data extraction
protocol that we rigorously follow, we mitigated this threat by
maintaining a set of spreadsheets to keep records but also to
reorganize our data set. This also allowed us to identify any
anomalies in our set.

VIII. RELATED WORK

To the best of our knowledge, our work is the first tertiary
review on the subject of SV. However several studies have
used systematic mapping study process to propose state of
the art these are part of the selected set of data used in this
work. Mattila et al. [34] use a systematic review process to
generate findings on SV as a whole. Hence, the following
studies also discussed secondary articles, although they are
not tertiary studies. Novais et al. [31] offer a systematic
mapping study on software evolution visualization. Survey on
software architecture visualization is presented by Carpendale
and Ghanam [7]. Caserta and Zendra [46] present the findings



TABLE II
SHARED RECOMMENDATIONS IDENTIFIED IN OUR SET

Statement Description References Total
R1 Conduct empirical studies to

validate usefulness
On existing visualizations, or the ones being developed, to
add them values and speed up the integration process. Con-
trolled experiment, unbiased subjects, quantitative mea-
sures

[1]–[3], [7], [8], [10],
[11], [21], [24], [26],
[27], [30], [31], [33],
[39], [41], [43], [44],
[46], [47]

39.5%
(19/48)

R2 Provide details on demand,
avoid cognitive overload

Support human cognition, provide detail-on-demand inter-
action or higher level of abstraction

[6], [7], [13], [16],
[20], [25], [28], [39],
[44], [47], [48]

23%
(11/48)

R3 Map techniques to meet spe-
cific goals, real problems

Embodying more knowledge of the application [12], [15], [25], [31],
[32], [37], [40], [44],
[47], [48]

21%
(10/48)

R4 Think about interoperability,
community collaboration

Through exchange format, making tools available online
(2, AV), reuse and use of recent techniques

[9], [14], [17], [26],
[28], [30], [32], [35],
[44], [45]

21%
(10/48)

R5 Engage learner in activities Allow them to construct their own visualization (active
learning), student-centered vision

[1], [2], [4], [5], [9],
[18], [22]

14.5%
(7/48)

R6 Think about usability in the de-
sign

Keep interaction simple, provide help system [5], [17], [20], [28],
[35], [37]

12.5%
(6/48)

R7 Have strong theoretical founda-
tion

Psychology theories, other than constructivism for example [1]–[3], [9], [38] 10.5%
(5/48)

R8 Use multiple view Ease selection of data, through source code view or more
abstract ones

[3], [19], [20], [26],
[32]

10.5%
(5/48)

R9 Use automated tools Reduce efforts to use the visualization [1]–[3], [11] 8%
(4/48)

R10 Exploit Virtual Environment To extend visualization to perception, ease collaborative
SE process, increase amount of data shown

[17], [32], [36], [46] 8%
(4/48)

R11 Consider real needs of viewer Meet stakeholders requirements, understand viewer objec-
tives

[8], [26], [32], [44] 8%
(4/48)

R12 Scale up to handle complexity
of current software

Handle large amount of data, on production scale level [10], [28], [37] 6%
(3/48)

R13 State research method and
questions

Besides, discuss the approach goals and validation strategy [30], [33], [40] 6%
(3/48)

R14 Enable customization Permits to meet viewer-specific needs [28], [37] 4%
(2/48)

R15 Use Gamification Contribute to effectiveness of learning tools [9], [24] 4%
(2/48)

of a far-reaching literature survey on visualizing static aspects
and the evolution of the software.

IX. CONCLUSION

Out of the 212 papers extracted, we reviewed 48 papers
related to SV and its sub-fields, and present them in Table I.
Our first research question [RQ1] provides insights on the state
of SV research area regarding secondary papers. It appeared
to be enough active to permits the production of our work. We
found which sub-fields are the most active (those addressed in
Section V).
The second one, [RQ2], allowed us to identify the purpose and
most used techniques of chosen sub-fields, while we evoke
corresponding issues in the discussion.
Finally, the last research question [RQ3] permits to emphasize
persistent issues encountered in the research area which is
slowing SV tools integration in the industry.
Thus, we resumed main findings among popular sub-fields
of SV, identified corresponding issues research is facing and
provide future search suggestions by gathering main recom-

mendation in Table II. Indeed, SV tool evaluations remain
superficial in most of the evoked fields, the lack of connections
between tool designs and their scope remains in most sub-
fields, as well as the dispersal of the research community.

REFERENCES

[1] Gallagher, K., Hatch, A., and Munro M. ”Framework for software ar-
chitecture visualization assessment”, Third IEEE Workshop on Visualizing
Software for Understanding and Analysis (VISSOFT), 2005, 10.1109/VIS-
SOF.2005.1684309.

[2] Christopher D. Hundhausen, Sarah A. Douglas, and John T. Stasko ”A
Meta-Study of Algorithm Visualization Effectiveness”, Journal of Visual
Languages & Computing, Volume 13, Issue 3, Pages 259-290, 2002,
https://doi.org/10.1006/jvlc.2002.0237.

[3] Price, B.A., Baecker, R.M., and Small, I.S. ”A Principled Taxonomy of
Software Visualization”, Journal of Visual Languages and Computing ,
Volume 4, Issue 3, Pages 211-266, 1993.

[4] Sorva, J., Karavirta, V., and Malmi, L. ”A review of generic program
visualization systems for introductory programming education”, ACM
Transactions on Computing Education , Volume 13, Issue 4, Article 15,
2013, 64 pages, http://dx.doi.org/10.1145/2490822.

[5] Urquiza-Fuentes, J. and Ángel Velázquez-Iturbide, J. ”A survey of
successful evaluations of program visualization and algorithm animation
systems”, ACM Transactions on Computing Education, Volume 9, Issue 2,
Article 9, 2009, 21 pages, 10.1145.1538234.1538236.



[6] Basit, Hamid, Hammad, Muhammad, and Koschke, Rainer. ”A survey on
goal-oriented visualization of clone data”, Third IEEE Working Conference
on Software Visualization (VISSOFT), Pages 46-55, 2015, 10.1109/VIS-
SOFT.2015.7332414.

[7] Y. Ghanam and S. Carpendale, ”A Survey Paper on Software Architecture
Visualization”, 2008.

[8] L. Merino, M. Ghafari, C. Anslow, and O. Nierstrasz, ”A sys-
tematic literature review of software visualization evaluation”, Jour-
nal of Systems and Software, Volume 144, Pages 165-180, 2018,
https://doi.org/10.1016/j.jss.2018.06.027.

[9] Abdullah Al-Sakkaf, Mazni Omar, and Mazida Ahmad ”A systematic
literature review of student engagement in software visualization: a theo-
retical perspective”, Computer Science Education, Volume 29, Issue 2-3,
Pages 283-309, 2019 10.1080/08993408.2018.1564611.

[10] LopezHerrejon RE, Illescas S,and Egyed A. ”A systematic mapping
study of information visualization for software product line engineering”,
Journal of Software: Evolution and Process, Volume 30, Issue 2, 2018,
https://doi.org/10.1002/smr.1912.

[11] Shahin, M., Liang P., and Ali Babar M. ”A systematic
review of software architecture visualization techniques”, Journal
of Software and Systems, Volume 94, Pages 161-185, 2014,
http://dx.doi.org/10.1016/j.jss.2014.03.071.

[12] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R.
Koschke, ”A Systematic Survey of Program Comprehension through
Dynamic Analysis”, IEEE Transactions on Software Engineering, Volume
35, Issue 5, Pages 684-702, 2009, 10.1109/TSE.2009.28.

[13] J. I. Maletic, A. Marcus and M. L. Collard, ”A task oriented view
of software visualization”, Proceedings First International Workshop on
Visualizing Software for Understanding and Analysis, Pages 32-40, 2002,
10.1109/VISSOF.2002.1019792.

[14] Cecile Yehezkel ”A taxonomy of computer architecture visualizations”,
Proceedings of the 7th annual Conference on Innovation and Technology
in Computer Science Education, Volume 34, Issue 3, Pages 101-105, 2002,
http://dx.doi.org/10.1145/544414.544447.

[15] Shaffer, C. A., Cooper, M. L., Alon, A. J. D., Akbar, M., Stewart, M.,
Ponce, S., and Edwards, S. H. ”Algorithm visualization: The state of the
field”, ACM Transactions on Computing Education, Volume 10, Issue 3,
Article 9, 2010, 10.1145/1821996.1821997.

[16] Vasconcelos, Renan, Marcelo Schots and Cludia Maria Lima Werner
An information visualization feature model for supporting the selection
of software visualizations, 22nd International Conference on Program
Comprehension, 2014.

[17] A. R. Teyseyre and M. R. Campo ”An Overview of 3D Software Vi-
sualization,” IEEE Transactions on Visualization and Computer Graphics,
Volume 15, Issue 1, Pages 87-105, 2009, 10.1109/TVCG.2008.86.

[18] Essi Isohanni and Hannu-Matti Jrvinen. ”Are visualization tools
used in programming education?: by whom, how, why, and why
not?”, Proceedings of the 14th Koli Calling International Con-
ference on Computing Education Research, Pages 35-40, 2014,
https://doi.org/10.1145/2674683.2674688.

[19] Mariam Sensalire, Patrick Ogao, and Alexandru Telea ”Classifying de-
sirable features of software visualization tools for corrective maintenance”,
Proceedings of the 4th ACM symposium on Software visualization. Pages
87-90, 2008, https://doi.org/10.1145/1409720.1409734.

[20] R. Tilley, Scott and Huang, Shihong. ”Documenting software systems
with views III: Towards a task-oriented classification of program visualiza-
tion techniques”, Proceedings of ACM Annual International Conference on
Computer Documentation. Pages 226-233, 2002, 10.1145/584955.584988.

[21] Sensalire, M., Ogao, P., and Telea, A. ”Evaluation of Software Visu-
alization Tools: Lessons Learned”, 5th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, 2009, 10.1109/VIS-
SOF.2009.5336431.

[22] Thomas L. Naps, Guido Rling, Vicki Almstrum, Wanda Dann, Rudolf
Fleischer, Chris Hundhausen, Ari Korhonen, Lauri Malmi, Myles McNally,
Susan Rodger, and J. ngel Velzquez-Iturbide. ”Exploring the role of visu-
alization and engagement in computer science education”, Working group
reports from Innovation and Technology in computer Science Education.
Pages 131-152, 2002, http://dx.doi.org/10.1145/782941.782998.

[23] J. Paredes, C. Anslow and F. Maurer ”Information Visualization for
Agile Software Development”, Second IEEE Working Conference on
Software Visualization, Pages 157-166, 2014, 10.1109/VISSOFT.2014.32.

[24] J. Hidalgo-Cspedes, G. Marn-Ravents and V. Lara-Villagrn ”Learn-
ing principles in program visualizations: A systematic literature re-

view”, IEEE Frontiers in Education Conference, 2016, Pages 1-9,
10.1109/FIE.2016.7757692.

[25] Marian Petre ”Mental imagery and software visualization in high-
performance software development teams”, Journal of Visual Lan-
guages & Computing, Volume 21, Issue 3, Pages 171-183, 2010,
https://doi.org/10.1016/j.jvlc.2009.11.001.

[26] Storey, M. A. D., ubrani, D., and German, D. M. ”On the use of visual-
ization to support awareness of human activities in software development:
a survey and a framework”, Proceedings of the 2005 ACM symposium on
Software visualization, Pages 193-202, 2005, 10.1145/1056018.1056045.

[27] Mller, Richard, and Zeckzer, Dirk. ”Past, Present, and Future of 3D Soft-
ware Visualization: A Systematic Literature Analysis”, 6th International
Conference on Information Visualization Theory and Applications, Pages
63-74, 2015, 10.5220/0005325700630074.

[28] Ghaleb, Taher, Alturki, Musab, and Aljasser, Khalid. ”Program com-
prehension through reverse-engineered sequence diagrams: A systematic
review”, Journal of Software: Evolution and Process, Volume 30, Issue
11, 2018, 10.1109/VISSOF.2007.4290693.

[29] H. M. Kienle and H. A. Muller ”Requirements of Software Visualiza-
tion Tools: A Literature Survey”, 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, Pages 2-9, 2007.

[30] Bani-Salameh, Hani, Ahmad, Ayat, and Aljammal, Ashraf. ”Software
evolution visualization techniques and methods - a systematic review” 7th
International Conference on Computer Science and Information Technol-
ogy, Pages 1-6, 2016, 10.1109/CSIT.2016.7549475.

[31] Renato Lima Novais, Andr Torres, Thiago Souto Mendes, Manoel
Mendona, Nico Zazworka, ”Software evolution visualization: A systematic
mapping study”, Information and Software Technology, Volume 55, Issue
11, 2013, Pages 1860-1883, https://doi.org/10.1016/j.infsof.2013.05.008.

[32] Koschke, Rainer. ”Software Visualization in Software Maintenance,
Reverse Engineering, and Reengineering: A Research Survey”, Journal
on Software Maintenance and Evolution. Volume 15, Pages 87-109, 2003,
10.1002/smr.270.

[33] D. Graanin, K. Matkovi, and M. Eltoweissy. ”Software visualization”,
Innovations in Systems and Software Engineering, Volume 1, Issue 2, Pages
221-230, 2005, https://doi.org/10.1007/s11334-005-0019-8.

[34] A. Mattila, P. Ihantola, T. Kilamo, A. Luoto, M. Nurminen, and H. Vtj.
”Software visualization today: systematic literature review”, Proceedings
of the 20th International Academic Mindtrek Conference, Pages 262-271,
2016, https://doi.org/10.1145/2994310.2994327.

[35] S. Bassil and R. K. Keller ”Software visualization tools: survey and
analysis”, Proceedings 9th International Workshop on Program Compre-
hension, Pages 7-17, 2001, 10.1109/WPC.2001.921708.

[36] Libert, Cdric and Vanhoof, Wim. ”Survey of Software Visualization
Systems to Teach Message-Passing Concurrency in Secondary School”,
Highlights of Practical Applications of Cyber-Physical Multi-Agent Sys-
tems: International Workshops of PAAMS 2017, Pages 386-397, 2017,
10.1007/978-3-319-60285-1 33.

[37] S. P. Reiss ”The Paradox of Software Visualization,” 3rd IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analysis,
Pages 1-5, 2005, 10.1109/VISSOF.2005.1684306.

[38] Abdullah Al-Sakkaf, A., Omar, M., and Ahmad, M. ”Theoretical
Underpinnings of Learner Engagement in Software Visualization Sys-
tem: A Systematic Literature Review Protocol”, International Journal of
Engineering & Technology, Volume 7, Issue 3.20, Pages 35-39, 2018
http://dx.doi.org/10.14419/ijet.v7i3.20.18727.

[39] Xu, Yangyang, Liu, Yan, and Zheng, Jiabin. ”To Enlighten Hidden
Facts in The Code: A Review of Software Visualization Metaphors”,
27th International Conference on Software Engineering and Knowledge
Engineering, Pages 294-297, 2015, 10.18293/SEKE2015-203.

[40] L. Merino, M. Ghafari and O. Nierstrasz ”Towards Actionable Visuali-
sation in Software Development”, IEEE Working Conference on Software
Visualization, Pages 61-70, 2016, 10.1109/VISSOFT.2016.10.

[41] A. Seriai, O. Benomar, B. Cerat and H. Sahraoui, ”Validation of
Software Visualization Tools: A Systematic Mapping Study,” Second
IEEE Working Conference on Software Visualization, Pages 60-69, 2014,
10.1109/VISSOFT.2014.19.

[42] Balogh, Gergo. ”Validation of the City Metaphor in Software Visual-
ization”, Computational Science and Its Applications, Pages 73-85, 2015,
10.1007/978-3-319-21413-9 6.

[43] Sulr, M., Bakov, M., Chodarev, S., and Porubn, J. ”Visual augmen-
tation of source code editors: A systematic mapping study”, Journal
of Visual Languages & Computing, Volume 49, Pages 46-59, 2018,
10.1016/j.jvlc.2018.10.001.



[44] Khan, Taimur, Barthel, Henning, Ebert, Achim, and L liggesmeyer,
Peter. ”Visualization and Evolution of Software Architectures”, Visual-
ization of Large and Unstructured Data Sets: Applications in Geospatial
Planning, Modeling and Engineering, Volume 27, 2012, 10.4230/OA-
SIcs.VLUDS.2011.25.

[45] R. E. Lopez-Herrejon, S. Illescas and A. Egyed ”Visualization for
Software Product Lines: A Systematic Mapping Study”, IEEE Working
Conference on Software Visualization, Pages 26-35, 2016, 10.1109/VIS-
SOFT.2016.11.

[46] Pierre Caserta, and Olivier Zendra. ”Visualization of the Static aspects
of Software: a survey”, IEEE Transactions on Visualization and Computer
Graphics, Institute of Electrical and Electronics Engineers, Volume 17,
Issue 7, Pages 913-933, 2011, 10.1109/TVCG.2010.110.

[47] Andreas Pleuss, Rick Rabiser, and Goetz Botterweck. ”Visualization
techniques for application in interactive product configuration”, Proceed-
ings of the 15th International Software Product Line Conference, Volume
2, Article 22, 8 pages, 2011, http://dx.doi.org/10.1145/2019136.2019161.

[48] Lemieux, Franois and Martin Salois. Visualization Techniques for Pro-
gram Comprehension - A Literature Review. 5th International Conference
on Software Methodologies, Tools and Techniques, 2006.

[49] S. Diehl ”Software visualization: visualizing the structure, behaviour,
and evolution of software”, Springer Science & Business Media, 2007.

[50] Stuart T. Kard, Jock D. Mackinlay, and Ben Scheiderman ”Readings in
Information Visualization, Using vision to think”, 1999.

[51] Petersen, K., Vakkalanka, S., and Kuzniarz, L. ”Guidelines for con-
ducting systematic mapping studies in software engineering: An update”,
Information and Software Technology, Volume 64, Pages 1-18, 2015.

[52] B. Schneiderman, ”The Eyes Have It : A Task by Data Type Taxonomy

for Information Visualizations”, Proceedings 1996 IEEE Symposium on
Visual Languages, 1996, 10.1109/VL.1996.545307.

[53] T. Dyba, T. Dingsoyr, and G.K. Hanssen, ”Applying systematic reviews
to diverse study types: an experience report”, First International Sympo-
sium on Empirical Software Engineering, 2007, 10.1109/ESEM.2007.59.

[54] M. Kuhrmann , D. Mndez Fernndez and M. Daneva ”On the pragmatic
design of literature studies in software engineering: an experience-based
guideline”, Empirical Software Engineering, Volume 22, Issue 6, Pages
2852-2891, 2017, 10.1007/s10664-016-9492-y

[55] Wohlin, C., Runeson, P., da Mota Silveira Neto, P.A., m, E.E., do Carmo
Machado, I., and de Almeida, E.S. ”On the reliability of mapping studies in
software engineering”, Journal of Systems and Software , Volume 86, Issue
10, Pages 2594-2610, 2013, http://dx.doi.org/10.1016/j.jss.2013.04.076

[56] M. V. Zelkowitz An update to experimental models for validating
computer technology, Journal of Systems and Software, Volume 82, 2009,
https://doi.org/10.1016/j.jss.2008.06.040.

[57] M. Lanza, S. Ducasse ”Polymetric views a lightweight visual approach
to reverse engineering”, IEEE Transactions on Software Engineering
Volume 29, Issue 9, Pages 782-795, 2003, 10.1109/TSE.2003.1232284.

[58] Gilmore DJ and Green TRG, ”Comprehension and recall of miniature
programs”, Journal of Man- Machine Studies, Volume 21, Pages 3148,
1984, 10.1016/S0020-7373(84)80037-1.

[59] Roman, G.-C. and Cox, K. C. ”A Taxonomy of Program Visualization
Systems”, IEEE Computer, Volume 26, Issue 12, Pages 11-24, 1993,
10.1109/2.247643.

[60] Fjeldstadt RK and Hamlen WT ”Application program maintenance
study: Report to our respondents”, Proceedings of the GUIDE 48. IEEE
Computer Society Press, 1984.


